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ABSTRACT

While antibodies are becoming an increasingly im-
portant therapeutic class, especially in personalized
medicine, their development and optimization has
been largely through experimental exploration. While
there have been many efforts to develop computa-
tional tools to guide rational antibody engineering,
most approaches are of limited accuracy when ap-
plied to antibody design, and have largely been lim-
ited to analysing a single point mutation at a time.
To overcome this gap, we have curated a dataset of
242 experimentally determined changes in binding
affinity upon multiple point mutations in antibody-
target complexes (89 increasing and 153 decreas-
ing binding affinity). Here, we have shown that by
using our graph-based signatures and atomic inter-
action information, we can accurately analyse the
consequence of multi-point mutations on antigen
binding affinity. Our approach outperformed other
available tools across cross-validation and two in-
dependent blind tests, achieving Pearson’s corre-
lations of up to 0.95. We have implemented our
new approach, mmCSM-AB, as a web-server that
can help guide the process of affinity maturation in
antibody design. mmCSM-AB is freely available at
http://biosig.unimelb.edu.au/mmcsm ab/.

INTRODUCTION

The ability of antibodies to selectively and specifically bind
tightly to targets and sites considered undruggable, has seen
them become a major focus of therapeutic and diagnostic
applications in a wide range of diseases. This specificity can
be so highly tuned that they can be used to even selectively
recognize a unique missense mutation, leading to their suc-
cessful application in personalized medicine (1,2). As anti-

body therapies become more common, new approaches to
more quickly and cheaply optimize the binding affinity and
specificity, known as antibody maturation, are increasingly
necessary. While experimental approaches to explore anti-
body binding space have become more efficient, previously
successful efforts have shown that at least two single-point
mutations are generally needed, which do not necessarily lie
only in the complementarity-determining regions (CDRs)
(3). Exploring all possible permutations and combinations
of mutations has therefore remained a bottleneck in the an-
tibody development pipeline.

Increasing computational power has led to a number of
different approaches to guide the rational engineering of
antibody binding and specificity. Initial approaches used
a range of techniques, including homology modelling (4),
protein–protein docking (5–7), energy functions (8–10) and
more recently machine learning-based approaches (11–13).
While these have been successfully used in the development
of a number of clinical antibodies, they have generally been
limited to the analysis of single-point missense mutations,
and have been shown to be only weakly correlated with ex-
perimentally measured changes.

We have previously shown that by using graph-based sig-
natures to represent the wild-type residue environment we
can accurately predict the effects of mutations on protein
folding, stability (14–16), dynamics (17), function (18) and
interactions (15,19–25). These have provided insights into
genetic diseases (26–32), drug resistance (33–42), pharma-
cokinetics (43–46) and rational protein engineering (47).
Extending this to look at antibody engineering, we devel-
oped mCSM-AB2 (25), which was able to more accurately
predict the effects of single-point missense mutations on an-
tibody binding affinity. However, at the time the representa-
tions used by mCSM-AB2 and the amount of data available,
still limited its ability to screen for the additive or synergistic
effects of combinations of mutations.

Here, we present a new approach, mmCSM-AB, as a web-
server that enables rapid and deep evaluations of combina-
tions of multiple mutations in antibody-antigen complexes
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using graph-based signatures, sequence- and structure-
based information. mmCSM-AB models were trained using
single-point mutations and the effects of multiple mutations
were assessed, outperforming other available tools across
our validation set of experimentally measured changes with
double to 14 mutations. mmCSM-AB will help to guide ra-
tional antibody engineering by analysing the effects of in-
troducing multiple mutations on binding affinity.

MATERIALS AND METHODS

Datasets

Effects of single-point mutations on antibody-antigen bind-
ing affinity (in terms of KD, given in molar) were collected
for 62 complexes (Figure 1 and Supplementary Table S1)
with known structures available at the Protein Data Bank.
The quality of 3D structures was reviewed with the resolu-
tion and R-value (Figure S1) from the wwPDB X-ray struc-
ture validation report. Mutation information for wild-type
and mutant was compiled from three different resources:
AB-BIND (48), PROXiMATE (49) and SKEMPI2.0 (50).

Since the binding affinity of non-binders cannot be accu-
rately measured, non-binders were excluded from our train-
ing dataset. This generated a final dataset of 905 single mis-
sense mutations, and 242 multiple missense mutations with
experimentally measured changes in binding affinity. Bind-
ing affinities of wild-type and mutant structures were con-
verted to binding energy (�G, given in Kcal/mol) (Equa-
tion 1) and the effects of mutations expressed in terms of
the change in binding energy (��G, Equation 2).

�G = RT ln (KD) (1)

��G = �Gwild − �Gmutant (2)

Training set. The 905 single point mutation training set
presented a skewed distribution, with an average ��G of
–1 kcal/mol (Supplementary Figure S2A). To avoid po-
tential bias in our machine-learning models, we also in-
cluded the hypothetical reverse mutations, as previously
proposed (17,20,23,51). Only reverse mutations with a mea-
sured effect in affinity below 2 kcal/mol were considered,
to avoid situations where the reverse mutation could poten-
tially compromise binding, with a total of 735 reverse muta-
tions being modelled. This resulted in a final training data-
set of 1640 mutations with associated changes in binding
affinity.

Blind-test set. To evaluate our approach on multiple point
mutations, the curated set of 242 experimentally charac-
terized multiple mutants was used (Supplementary Figure
S2B). This included multi-point mutations ranging from 2
to 14 mutations (Supplementary Figure S2C). Based on the
proportion of the number of multiple mutations, the 242
blind-test set was further divided into two subsets; 101 dou-
ble and triple mutations and 242 all multiple missense mu-
tations and assessed separately.

Assessing additive and synergistic multiple point mutations.
To explore the role of additive and synergistic effects across

our dataset, we identified a set of 38 multiple point muta-
tions, where each individual mutation had been experimen-
tally characterized as a single-point missense mutation. Ad-
ditive mutations were defined as when the sum of the in-
dividual mutations was within 1 kcal/mol of the multiple-
point mutation. We identified 24 additive and 14 synergistic
mutations.

Non-binder dataset. During data curation we identified 47
sets of multiple mutations, which when experimentally eval-
uated completely disrupted antigen binding. These were ex-
cluded from the training and test sets, but used for further
evaluation of the mmCSM-AB models.

Validation set. We collected an additional 59 experimen-
tally characterized multiple mutation complexes from a pre-
vious study benchmarking the performance of available
methods in predicting effects of mutations on antibody-
antigen affinity (52). This dataset was not present in our
bind-test set, and was therefore used as a validation set to
compare the performance of mmCSM-Ab with other meth-
ods.

All datasets used are available for download at http://
biosig.unimelb.edu.au/mmcsm ab/datasets/.

Mutation modelling and feature engineering

Modelling mutant structures. Modeller (v.9.21) (53) was
used to build single point mutants as well as multiple mu-
tants incrementally. Structures were submitted for energy
minimization using FoldX (54).

Graph-based signatures. The mCSM graph-based signa-
tures have been widely adopted to capture both the geome-
try and physicochemical properties of wild-type residue en-
vironment using the cutoff scanning matrix algorithm and
the resulting pharmacophore changes upon mutation (15).
mCSM signatures were the main feature class used to train
the mmCSM-AB predictive method.

Energetic terms. FoldX was used to calculate interaction
energies for both wild-type and modelled mutant structures.

Interface properties. To capture changes in interaction
networks upon mutation, all non-covalent interactions in
the wildtype and mutant structures were calculated using
Arpeggio (55). The difference in the solvent accessible sur-
face area between wild-type and mutant structures was cal-
culated using DSSP (56). Additionally, the distance from
the mutated sites to binding partner was also calculated.

Evolutionary scores. In order to capture residue conserva-
tion, we employed different evolutionary scoring measures.
These include Position Specific Scoring Matrices (PSSMs)
calculated from multiple sequence alignments using PSI-
BLAST (57) on the non-redundant UniProtKB/SwissProt
database and substitution sores from PAM30.

Mutation distances. To account for potential synergistic
and compensatory effects of mutations, we also included
information on the distances between the individual muta-
tions.
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Figure 1. mmCSM-AB workflow. Method development can be divided into four steps. During data preparation, 905 single point mutation and 242 multi-
point mutations across 62 complexes (50 Fab, 3 nanobody, 1 monobody,1 Ab-Ab and 7 others described in Supplementary Table S1) were collected.
During feature extraction, the curated 3D structures were used to calculate graph-based signatures as well as complementary structure- and sequence-based
attributes. On the next step, these were provided as evidence to train and test supervised learning algorithms. Greedy feature selection was performed to
optimize performance on multiple mutations and reduce dimensionality. On the last step, the best performing model was implemented into three prediction
modes; the ‘Prediction mode’ for running user-specified mutations and the Antibody and Antigen Design modes, for systematically assessing permutation
of multiple mutations on the antibody and antigen, respectively, at the binding interface.
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Figure 2. Performance of mmCSM-AB on multiple mutations. The figure depicts the performance of the final mmCSM-AB model on independent blind
tests. The method achieved a Pearson’s correlation of 0.80 (RMSE = 1.30) on all multiple missense mutations (242 in total) (A) and 0.95 (RMSE = 0.91)
on double and triple mutation (101 in total) (B). Performance increases to 0.95 and 0.97, respectively, after 10% of outliers are removed. On an additional
validation set comprised of 59 multiple mutations, mmCSM-AB achieved a correlation of 0.85 (RMSE = 1.66) (C), increasing to 0.91 across 90% of the
data.

Machine Learning

A range of supervised learning algorithms for regression
currently available within the scikit-learn Python library
were evaluated. These included Random Forest, Extra
Trees, Gradient Boost, XGBoost, SVM and Gaussian Pro-
cess. The best performing model was selected based on
Pearson’s correlation coefficient and Root Mean Squared
Error (RMSE), evaluated under different cross-validation
schemes (with 10 bootstrap repetitions), as well as blind
tests. The best performing algorithm was ExtraTrees. In or-
der to reduce dimensionality and improve performance, fea-
ture selection was carried out in an incremental stepwise
greedy approach.

WEB SERVER

mmCSM-AB was developed using Materialize 1.0.0 and
Flask 1.0.2, and hosted on an Apache2 Linux server. This
webserver is freely available at http://biosig.unimelb.edu.au/
mmcsm ab.

Input

mmCSM-AB can analyse the effects of introducing multi-
ple point mutations on antibody-antigen binding affinity. It
can be used to either predict the effects of a known muta-
tion via Prediction Mode, or systematic exploration of all
potential multiple mutations at the interface to guide ratio-
nal antibody engineering via Design mode (Supplementary
Figure S3).

The server requires the user to provide (i) an antibody-
antigen PDB structure either in a PDB file or PDB accession
code; (ii) for Prediction Mode, provide a multiple mutation
denoted by list of point mutations separated by semicolons,
with mutations specified as the chain ID, wild-type residue
one-letter code, residue number, and mutant residue one-
letter code. Alternatively, users can upload a list of multi-
ple mutations as a text file. Design mode automatically con-

siders all possible combinations of double- and triple-point
mutations of residues on either the antibody or the antigen
side of the interface.

Output

The Prediction Mode result page consists of three sections.
The mutation table shows predicted ��G (in kcal/mol) of
a given multiple mutation and complementary details such
as distance among single point mutations and distance to
interface (Supplementary Figure S4). If the user provides
more than one multiple mutation, the order of each result
in the mutation table will be the same order as the given mu-
tation list. Users can check wild-type atomic interactions of
each of single point mutations via 3D molecular viewer, im-
plemented using an NGL plugin (58). All results in the data
table and 3D visualization can be downloaded as comma-
separated file (CSV) and PyMOL session file (PSE), respec-
tively.

The output of Design Mode shows the top 100
increasing/decreasing multi-point mutations at the binding
interface of a given antibody-antigen complex (Supplemen-
tary Figure S5). Users need to select between stabilizing and
destabilizing mutations in the mutation table to browse cor-
responding mutations. Similar to the Prediction Mode, each
row of the mutation table provides information about anti-
body annotation, distance to interface and predicted ��G.
By selecting the radio box in the first column, users can vi-
sualize the wild-type structure of each multi-point mutation
in the 3D visualization section. All results of the mutation
table are downloadable as a CSV file.

VALIDATION

Performance on cross-validation

In order to build a robust and reliable model for predict-
ing the effects of mutations on antibody binding affinity,
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Table 1. Performance comparison of available methods

Blind-test

242 all mutations 101 double and triple mutations 104 unique all mutations 53 unique double and triple mutations

Method Pearson (� )
Spearman

(� ) RMSE Pearson (� )
Spearman

(� ) RMSE Pearson (� )
Spearman

(� ) RMSE Pearson (� )
Spearman

(� ) RMSE

mmCSM AB 0.80 0.78 1.30 0.95 0.89 0.91 0.77 0.72 1.15 0.92 0.84 0.66
mCSM PPI 0.12*** 0.12*** 4.13 0.64*** 0.36*** 2.50 0.29*** 0.23*** 4.58 0.11*** 0.01*** 2.39
mCSM PPI2 0.56*** 0.45*** 1.88 0.89** 0.76** 1.14 0.25*** 0.23*** 1.91 0.65*** 0.58** 1.18
mCSM AB 0.47*** 0.39*** 2.61 0.55*** 0.32*** 2.99 0.08*** 0.01*** 3.21 0.07*** 0.31*** 3.53
mCSM AB2 0.66*** 0.39*** 2.84 0.88** 0.61*** 3.40 0.45*** 0.32*** 2.29 0.62*** 0.27*** 1.91
DiscoveryStudio 0.63*** 0.58*** 1.83 0.76*** 0.56*** 1.79 0.48*** 0.25*** 1.50 0.67*** 0.43*** 1.27
DFIRE 0.52*** 0.53*** 1.93 0.70*** 0.55*** 2.14 0.36*** 0.34*** 1.52 0.48*** 0.34*** 1.36
bASA 0.47*** 0.54*** 71.08 0.68*** 0.67*** 57.76 0.32*** 0.24*** 43.20 0.57*** 0.53** 50.22
dFoldX 0.45*** 0.54*** 2.06 0.54*** 0.63*** 2.20 0.44*** 0.31*** 1.73 0.68*** 0.57** 1.29
SIPPER 0.41*** 0.52*** 3.59 0.43*** 0.53*** 3.45 0.36*** 0.39*** 2.49 0.44*** 0.56** 2.26
ZRANK 0.37*** 0.42*** 7.23 0.40*** 0.38*** 7.95 0.34*** 0.18*** 8.78 0.46*** 0.21*** 10.11
dFIRE 0.33*** 0.34*** 2.15 0.70*** 0.55*** 2.14 0.36*** 0.34*** 1.52 0.48*** 0.34*** 1.36
PRODIGY 0.32*** 0.37*** 2.20 0.39*** 0.46*** 2.60 0.17*** 0.16*** 1.62 0.47*** 0.37*** 1.42
FIREDOCK 0.28*** 0.28*** 5.11 0.30*** 0.24*** 4.49 0.19*** 0.05*** 5.61 0.24*** 0.09*** 4.82
FIREDOCK AB 0.26*** 0.27*** 5.52 0.26*** 0.21*** 4.70 0.19*** 0.07*** 5.90 0.19*** 0.02*** 5.17
ROSETTADOCK 0.19*** 0.38*** 2.32 0.19*** 0.24*** 2.69 0.22*** 0.26*** 1.78 0.34*** 0.33*** 1.47
ZRANK2 0.19*** 0.62*** 118.44 0.17*** 0.67*** 178.89 0.26*** 0.37*** 175.97 0.33*** 0.55** 245.93
INSIDE 0.07*** 0.01*** 2.48 0.11*** 0.02*** 2.68 0.11*** 0.03*** 1.68 0.04*** 0.15*** 1.66
LISA 0.00*** 0.04*** 2.39 0.15*** 0.16*** 2.80 0.21*** 0.26*** 1.93 0.39*** 0.49*** 2.01

**P-value < 0.01, ***P-value < 0.001; statistical significance of Pearson’s correlation coefficient was evaluated by Fisher’s r-to-z transformation (two-tailed) and Spearman’s rank-correlation coefficient was
converted as described by Walker et al. (2003) into Pearson’s correlation before we applied the transformation.

mmCSM-AB was trained using different stratified cross-
validation approaches. We achieved Pearson’s correlations
up to 0.70 (RMSE = 1.03 kcal/mol) on 5-, 10- and 20-fold
cross validation. We further validated the model, by per-
forming a low redundancy leave-one-complex out valida-
tion, achieving a Pearson’s correlation up to 0.64 (RMSE =
1.10 kcal/mol). Following feature selection using a greedy
algorithm, we were left with a total of 83 features. Interest-
ingly, the only features selected for the final model were the
graph-based structural signatures, the evolutionary score
and the Arpeggio calculated interactions.

Performance on multi-point mutations

Our final mmCSM-AB model achieved a Pearson’s cor-
relation of 0.95 (RMSE = 0.91 kcal/mol, Figure 2) and
0.80 (RMSE = 1.30 kcal/mol, Figure 2) on the 101 dou-
ble and triple mutations and the overall 242 multiple mu-
tations, respectively (Table 1). Comparing the performance
of mmCSM-AB to 18 alternative approaches, mmCSM sig-
nificantly outperformed all methods across both mutation
sets (P-value <0.01, Fisher’s r-to-z transformation; Table
1). The inclusion of the hypothetical reverse mutations led
to a significant improvement in performance. In particular,
inclusion of hypothetical reverse mutations resulted in a fi-
nal model with significantly improved ability to classify mu-
tations as leading to increased binding affinity (Supplemen-
tary Table S2).

For comprehensive reviews of the performance in classi-
fying favourable and unfavourable mutations across avail-
able methods, the predicted values from the comparative
study (Table 1) were further classified as either increas-
ing (��G > 0.5 Kcal/mol) or decreasing (��G ≤ –0.5
kcal/mol) binding affinity. Using mmCSM-AB to clas-
sify mutations into these two categories, we achieved a
Mathew’s Correlation Coefficient (MCC) of 0.67 and F1-
score of 0.89. Supplementary Figure S6 shows the corre-
sponding ROC curves, with our predictor outperforming

other methods achieving an Area Under the ROC Curve
(AUC) of 0.94.

To evaluate whether the performance relies on the train-
ing dataset, we filtered out 53 out of 101 double and triple
mutations and 104 out of the overall 242 multiple mutations
where none of the mutations was present in the training
dataset. mmCSM-AB achieved a Pearson’s correlation of
0.92 (RMSE = 0.66 kcal/mol, Table 1) and 0.77 (RMSE
= 1.15 kcal/mol, Table 1) on the 53 unique double and
triple mutations and the 104 unique mutations respectively,
which demonstrates the robustness of our approach and its
applicability to understand mutational effects upon diverse
multi-point mutations.

Performance on additive and synergistic multiple point muta-
tions

From the 38 multiple mutations which have their individual
��Gs from single-point mutation dataset, we identified 24
additive and 14 synergistic sets of multiple-point mutations.
The mmCSM-AB model was evaluated across both sets,
showing comparable performance regardless of whether the
mutation effects were additive or synergistic. mmCSM-AB
achieved a Pearson’s correlation of 0.97 (RMSE = 0.84
kcal/mol) across the multiple point mutations identified as
additive, and 0.94 (RMSE = 1.62 kcal/mol) across those
identified as synergistic.

Performance in ranking the effect of multiple point mutations

To guide rational antibody engineering, effective tools need
to be able to identify the mutations leading to the great-
est improvement in binding affinity. We therefore further
assessed the ability of mmCSM-AB and available tools
to ranking mutations in the order of most increasing and
decreasing binding affinity. mmCSM-AB showed strong
performance, achieving the Kendall’s Tau and Spearman’s
rank-correlation coefficient up to 0.71 and 0.86 on the

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/48/W

1/W
125/5841134 by U

niversity of Bologna user on 03 N
ovem

ber 2020



W130 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

242 multiple mutations, and outperforming all other ap-
proaches (Supplementary Table S3).

Performance on non-binders

The mmCSM-AB model was further evaluated against the
47 data points where the introduction of multiple mutations
led to complete disruption of antigen binding. mmCSM-AB
correctly classified 46 out of 47 non-binders (Supplemen-
tary Table S4, 98% accuracy).

Performance on external validation set

We further evaluated the performance of mmCSM-AB us-
ing the benchmark dataset from Barlow and colleagues
(59). The 59 multiple mutations found in the antibody-
antigen complexes did not appear in any other considered
dataset and were used for performance comparison of avail-
able tools (Table 1). Considering all metrics in Supplemen-
tary Table S5, mmCSM-AB showed the second-best perfor-
mance across 19 comparable methods, achieving a Pearson’s
correlation of 0.85 (RMSE = 1.66 kcal/mol).

CONCLUSION

Here we introduce mmCSM-AB, a web server that uses our
graph-based signatures to predict the effects of multiple-
point missense mutations on antibody binding affinity. The
method represents a significant advance upon our cur-
rent predictive platform, outperforming previous methods,
which have primarily been limited to single-point missense
proteins. mmCSM-AB can assist antibody design efforts via
a freely available, user-friendly and easy to use web server at
http://biosig.unimelb.edu.au/mmcsm ab.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

Y.M. was supported by the Melbourne Research Scholar-
ship; D.B.A. and D.E.V.P. were funded by a Newton Fund
RCUK-CONFAP Grant awarded by the Medical Research
Council (MRC) and Fundação de Amparo à Pesquisa do
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