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Prediction of rifampicin resistance 
beyond the RRDR using 
structure‑based machine learning 
approaches
Stephanie Portelli 1,2, Yoochan Myung 1,2, Nicholas Furnham3, 
Sundeep Chaitanya Vedithi4, Douglas E. V. Pires 2,5 & David B. Ascher 1,2,4*

Rifampicin resistance is a major therapeutic challenge, particularly in tuberculosis, leprosy, P. 
aeruginosa and S. aureus infections, where it develops via missense mutations in gene rpoB. Previously 
we have highlighted that these mutations reduce protein affinities within the RNA polymerase 
complex, subsequently reducing nucleic acid affinity. Here, we have used these insights to develop a 
computational rifampicin resistance predictor capable of identifying resistant mutations even outside 
the well‑defined rifampicin resistance determining region (RRDR), using clinical M. tuberculosis 
sequencing information. Our tool successfully identified up to 90.9% of M. tuberculosis rpoB variants 
correctly, with sensitivity of 92.2%, specificity of 83.6% and MCC of 0.69, outperforming the current 
gold‑standard GeneXpert‑MTB/RIF. We show our model can be translated to other clinically relevant 
organisms: M. leprae, P. aeruginosa and S. aureus, despite weak sequence identity. Our method 
was implemented as an interactive tool, SUSPECT‑RIF (StrUctural Susceptibility PrEdiCTion for 
RIFampicin), freely available at https ://biosi g.unime lb.edu.au/suspe ct_rif/.

The drug rifampicin (Rif) was initially developed in the 1960s, through modification of the natural isolate 
rifamycin  B1. This novel, orally available, semi-synthetic agent, was shown to block the DNA-dependent RNA 
polymerase transcription initiation  complex1, which confers its bactericidal activity. Since its discovery, Rif 
has become part of the backbone treatment for mycobacterial tuberculosis (TB) and leprosy infections and 
remains their most effective therapeutic available  today2,3. The introduction of Rif to the TB multi-drug regimen 
reduced treatment time from 18 to 9 months4, which was further shortened to 6 months through introduction 
of  pyrazinamide5. Inclusion of Rif as part of the multi-drug therapy regimen for leprosy in the mid-80 s reduced 
initial disease incidence from over 5 million to less than 200,000 cases in the two following  decades6. Clinically, 
Rif is also reserved as a last line drug in multi-drug resistant (MDR) infections from Staphylococcus aureus 
(methicillin-resistant S. aureus; MRSA)7 and Pseudomonas aeruginosa8, among other  infections7.

Following its introduction, resistance in the mycobacteria M. tuberculosis and M. leprae has developed as 
a direct result of evolutionary purging upon extended Rif exposure, primarily through missense mutations in 
drug targets or activating  enzymes9. This phenomenon affected over half a million tuberculosis cases in 2018, 
of which, 78% were also classified as MDR-TB2. Similarly, according to global surveillance efforts in 2018, Rif 
resistance is observed in 3.8% of all leprosy cases, having a higher incidence (5.1%) upon relapse (secondary 
resistance)3. Resistance occurs primarily through the accumulation of missense mutations within the rpoB7,10 
gene, which encodes the RNA polymerase β-subunit. A specific 81 bp region within this gene, known as the 
rifampicin resistance determining region (RRDR), has been widely associated with drug  resistance10. This region 
is highly conserved amongst species, as it forms part of the transcription cleft and active site.

The current WHO-endorsed test for identifying Rif resistance in TB, the GeneXpert-MTB/RIF, is a molec-
ular test which solely focuses on identifying variants in the  RRDR2,11. According to published reports, this 
test can detect Rif resistance with a sensitivity of 95% and specificity of 98–99%12,13 in both  pulmonary13 and 
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extra-pulmonary12 TB. Systematic evaluations of resistance mutations within rpoB suggest, however, that per-
formance is much lower clinically, with estimates that a third of resistant TB infections are  missed14. In particu-
lar, different studies have identified resistance-associated mutations outside the RRDR in the Mycobacterium 
tuberculosis (Mtb) rpoB  gene15–17, which are consequently misdiagnosed as susceptible by the gold standard test.

In leprosy, resistance to Rif was traditionally identified through the mouse footpad model, which takes 
months to culture and requires specialised  personnel3,18. This might account for the lower incidence of Rif 
resistance reported in leprosy when compared to TB. Advancements in DNA sequencing and PCR have enabled 
for a prompt identification of resistance biomarkers within rpoB3. These molecular techniques have been used 
by the WHO Global Leprosy Programme, where they also focused on the RRDR in M. leprae to identify resist-
ance  mutations3. Results from these tests were at 100% sensitivity and 99% specificity in detecting resistance 
 mutations3, but again only focused on a small region across the whole gene.

The broad distribution of mutations across the gene in Mtb might indicate alternative Rif resistance mecha-
nisms beyond interference with drug binding. In our earlier work, we investigated the potential mechanisms of 
rifampicin resistant mutations across the whole Mtb gene and found that disruptions in protein–protein interac-
tions, leading to destabilisation of the RNA polymerase complex and nucleic acid  affinity19, are important con-
tributing molecular factors. It is well established that mutations within the rpoC  gene20,21 compensate disruptive 
effects of resistance-causing rpoB mutations, which explains an overall normal transcriptional function despite 
a loss of intermolecular affinities in resistant bacteria. These intricate mechanisms at the protein complex level 
cannot be encompassed by the current molecular tools being used, which focus only on the RRDR sequence. 
Further to this, whole genome sequencing techniques, despite their efficiency, do not explain how resistance 
arises at the molecular level—limiting them to the characterisation of known mutations, without any predictive 
capability for novel variations.

To overcome these limitations, we have used a computational approach to further our understanding of 
the molecular mechanisms leading to resistance and to build a novel, web-based diagnostic tool, SUSPECT-
RIF (StrUctural Susceptibility PrEdiCTion for RIFampicin), to accurately and pre-emptively identify resistance 
mutations. Our structure-based diagnostic tool follows previous, clinically successful approaches in predicting 
TB drug  resistance22–25. Despite only being trained on information readily available for Mtb rpoB mutations, we 
show that our tool is also effective in identifying resistant mutations in infections caused by M. leprae, S. aureus 
and P. aeruginosa.

In this work, we have computationally measured effects of missense mutations in Mtb rpoB on protein 
 stability26–28,  dynamics29,30, and interactions with  Rif31, other  proteins26,32, nucleic  acids26,33, and metal  ions34. 
Machine learning was used on these measurements to train, test and validate a Rif-resistance classifier as a novel 
diagnostic predictor. Our final tool, SUSPECT-RIF, incorporates sequence- and structure-based features to model 
how missense mutations lead to resistance.

Results
The general methodology of this project is summarized in Fig. 1 and is divided into four main phases. The initial 
phase of this project sought to combine the current biological understanding of Rpob function and Rif resistance 
in the literature, with structural and mutational information. Notably, a thorough quality check of the crystallo-
graphic  structure35 and mutational  information15 was carried out to ensure that the final structure-based predic-
tor was built on biologically accurate data (Fig. 1A). Our training set contained 203 resistant and 28 susceptible 
mutations obtained from the London School of Hygiene and Tropical  Medicine15. An independent test set was 
curated from online  databases36–38 and contained 67 resistant and 21 susceptible mutations (Suppl. Figure 1). In 
the feature generation phase (Fig. 1B), different molecular effects of mutations were predicted using available 
tools. Additionally, features describing  conservation39–44, the mutational  local45–48 and global  environments49,50 
were also calculated. Here, features describing “local environments” accounted for protein properties at the 
mutation site prior to (e.g. residue depth) and after mutation (e.g. changes in protein  stability26–28). The “global 
environment” was calculated through graph-based  signatures49,50, which capture the overall protein as a series 
of local “nodes” connected to the mutation site “node” across different distance patterns. Further information 
on the features used is detailed in Methods. Next, a qualitative analysis was carried out to better understand the 
underlying resistance mutation mechanisms at the protein level, by using local environment and affinity change 
measurements (Fig. 1C). During machine learning, all features were used to train and test different classification 
algorithms for comparison and evaluation. This process included optimisation strategies such as feature selection. 
The best performing algorithm was selected and validated through independent clinical tests (Fig. 1D) prior to 
the final implementation phase. Here, we describe how this methodology was used to develop a predictive clas-
sifier for Rif resistance, demonstrating application across resistant mutations in four distinct organisms where 
Rif is used: M. tuberculosis36–38,51,52, M. leprae53,54, P. aeruginosa55 and S. aureus56.

Qualitative structural analysis. A detailed qualitative analysis on RpoB, limited to resistance mutations, 
has already been published as part of a larger study exploring three different drug targets in TB  treatment19. 
Here, we expanded our analysis to include susceptible mutations, a more comprehensive set of Mtb Rif-resist-
ant mutations, and mutations across all species tested. For M. tuberculosis mutations, in silico biophysical cal-
culations were carried out on the experimental crystal structure of Mtb RNA polymerase complex (PDB id: 
 5UHC35). As no experimental structure of the other three organisms was available, we modelled these structures 
through comparative homology modelling using the Mtb  structure35 as the template and used them for feature 
calculation. When considering Rif resistance mutations across all species tested, disruptions in protein–protein 
 interactions26 and subsequent reduction in nucleic acid  affinity26 were the most predominant mechanisms of 
resistance, followed by reductions in ligand  affinity31 and protein  stability27 (Fig. 2). This is in line with our previ-
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Figure 1.  Overview of SUSPECT-RIF workflow. Mutational data was manually curated from the literature, 
followed by structural analysis to ensure high data quality (A). Structural and Sequence-based properties 
were calculated and their ability to distinguish between mutation classes was assessed (B). Evolutionary and 
biological insights were used to train a machine learning classifier to accurately identify novel resistant and 
susceptible variants (C). Evaluation of the final model across blind clinical test sets from M. tuberculosis showed 
high performance and accurately identified clinical resistance variants from M. leprae, P. aeruginosa and S. 
aureus (D). SUSPECT-RIF is  available at https ://biosi g.unime lb.edu.au/suspe ct_rif.

https://biosig.unimelb.edu.au/suspect_rif
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ous qualitative analysis carried out on M. tuberculosis mutations  alone19, and provided a good starting point for 
building a Rifampicin resistance predictor for these organisms.

When compared to M. tuberculosis (n = 270; Fig. 2A) resistance mutations, M. leprae mutations (n = 41; 
Fig. 2B) follow similar trends, where the major effects were as a result of protein–protein and protein-nucleic 
acid affinity decrease. This is possibly because of higher sequence identity (SI = 95%) amongst the mycobacterial 
RpoB proteins. According to our analysis, between the two mycobacteria, effects on protein stability were more 
pronounced for Mtb (27% of Mtb mutations vs. 14% of M. leprae mutations, p-value = 0.13), while those on 
ligand affinity were significantly more distinct in M. leprae mutations (17% of Mtb mutations vs. 32% of M. leprae 
mutations, p-value = 0.05). P. aeruginosa (n = 18; SI = 55%; Fig. 2C) also follows the same trend, although from the 
non-ligand interactions, disruption of nucleic acid affinity (50% of P. aeruginosa mutations) is stronger than for 
protein–protein affinity (6% of P. aeruginosa mutations). For S. aureus, however, (n = 51; SI = 61%; Fig. 2D) the 
main mechanism of resistance is through disruption of ligand affinity, which might shed light on resistance prop-
erties associated with multi-drug resistance in MRSA populations. Other possible causes underlying differences 
between non-mycobacteria and mycobacteria may be explained biologically through horizontal gene transfer.

Feature analysis and engineering
Descriptive features were calculated to represent major biological functions and processes: protein interactions, 
local environment, graph-based signatures as measures of global environment, pharmacophore modelling, and 
conservation (Fig. 1). A total of 298 features were calculated.

Prior to machine learning, we subjected our Mtb dataset to a Welch’s t-test, in order to identify features that 
can distinguish between the two phenotype classes, resistant (n = 270) and susceptible (n = 49; Fig. 3 and Suppl. 
Figure 2). Among the most distinguishing features (given by a p-value of < 0.05) were changes in nucleic acid 
binding  affinity26 (p < 0.05), distance to nucleic acid (p < 0.0001) and Rif (p < 0.0001) and protein flexibility, 

Figure 2.  Graphical representation of mutations present within our study for (A) Resistant M. tuberculosis, 
(B) Resistant M. leprae, (C), Resistant P. aeruginosa, and (D) Resistant S. aureus datasets. Mutations labelled 
according to predominant effect: ligand affinity (salmon), non-ligand affinities (teal), protein stability (blue) and 
mildly stabilizing mutations (grey).
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denoted as deformation  energy48 (p < 0.001). These features highlight the importance of considering structural 
effects when analysing, and consequently predicting, mutational phenotypes. Other highly distinguishing proper-
ties were sequence-based features PROVEAN  Protein41 (p < 0.0001) and  SIFT39,40 (p < 0.05), which measure the 
effect of mutations on protein function based on sequence  alignment39–41 and amino acid  properties39,40, and 
the conservation feature “Rate of Evolution” given by  ConSurf43 (p < 0.0001). Considering the highly conserved 
rpoB gene being studied, these results show that resistant mutations are more likely to cluster at highly conserved 
regions (given by a lower evolutionary rate from ConSurf) than susceptible ones. This clustering at conserved, 
prominent sites within the gene are thought to be crucial for their gain-of-function survival mechanism in the 
presence of a drug. As part of model optimisation, features chosen through greedy feature selection were also 
statistically compared through a correlation matrix (Suppl. Figure 3) in order to remove any redundancies 
within features.

This process removed the feature describing change in vibrational entropy as calculated by  ENCoM30, as it 
correlated with the respectively calculated change in protein  stability30.

Following removal of redundant features, bottom-up greedy feature selection was carried out, based on Mat-
thews correlation coefficient (MCC). Our optimized model contained 41 features (Suppl. Table 1), which included 
representative features from the different classes considered including: graph-based signatures, stability effects, 
dynamics and flexibility measurements, pharmacophore changes and the changes in protein interactions with 
ligand rifampicin, nucleic acids and other proteins. Notably, while graph-based signatures provide a measure 
of global environment through different local environments at different distances from the mutation site, our 
feature selection only selected one of these features: Inter-HP:4.50, which accounts for hydrophobic and polar 
interactions within 4.50 Å of the mutational site. As only this feature from graph-based signatures was used, 
overall global effects are not represented in the final model, but rather, a physicochemical measure was added 
to the other local environment features.

The greedy feature selection approach used in this work is a heuristic approach, whereby the optimal com-
bination of features is obtained in a stepwise, incremental manner. The final features obtained corresponded 
to our initial qualitative analysis results and are biologically relevant when considering overall interactions at 
the RNA polymerase cleft. To identify the contribution of each property feature to the final model, we trained a 
model under the same parameters on different subsets of features which likely work in synergy: conservation, 
intramolecular interactions, protein flexibility and dynamics, graph-based signature, ligand affinity, nucleic acid 
affinity, protein–protein interactions, physicochemical properties and presence in RRDR. MCC values depict-
ing performance on the blind test for each subset model were compared (Suppl. Table 2). Notably, the major 
contributing feature for our final model was change in ligand binding affinity (MCC = 0.56). Other features 
contributed to the model through lower extents: physicochemical properties (MCC = 0.22), graph-based signa-
ture (MCC = 0.19), protein flexibility measurements (MCC = 0.17), changes in protein-nucleic acid interactions 
(MCC = 0.15), changes in protein–protein interactions within the RNA polymerase complex (MCC = 0.13) and 
conservation (MCC = 0.10). Finally, intramolecular interaction counts (MCC = 0.03) and presence in RRDR 

Figure 3.  Comparison of the distribution of key properties between resistant and susceptible Mtb mutations. 
Selected properties included structure-based features (change in nucleic acid affinity, deformation energy and 
distance to nucleic acid) and sequence-based features (PROVEAN, SIFT and rate of evolution scores). Statistical 
significance calculated by Welch sample t-test.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18120  | https://doi.org/10.1038/s41598-020-74648-y

www.nature.com/scientificreports/

(MCC = 0.0) gave negligible contribution on their own, but are thought to enhance the effects of other features, 
e.g. affinity changes and changes in ligand affinity respectively when used within the final model.

Model performance
Following greedy feature selection, our trained predictive classifier had comparable MCC between training (0.72) 
and blind test (0.71), with an AUC (Area Under Precision Recall Curve) of 0.99 and 0.89 respectively (Suppl. 
Figure 4A). When tested on all mutations in our training and blind Mtb datasets (n = 319), our initial model’s 
performance in identifying resistant (sensitivity) and susceptible (specificity) mutations was 92.2% and 81.6%. 
For mutations located inside the RRDR, the model correctly predicted all resistant mutations (n = 87; 38 in train-
ing set, 49 in blind test), having an identical performance to GeneXpert-MTB/RIF. Finally, the performance for 
all Mtb mutations outside the RRDR, for which there is no current molecular test, was at a sensitivity of 89.1% 
and specificity of 89.8%. Based on the assumptions underlying the GeneXpert-MTB/RIF, outside the RRDR it 
captured 0% of the resistant mutations and 100% of susceptible mutations. The distributions of performance 
across train and test sets are described in Table 1. Finally, a comparison of our final classifier, SUSPECT-RIF, with 
GeneXpert-MTB/RIF performance on the full Mtb (n = 319) dataset shows significant improvement in resistance 
detection (Fig. 4A; p-value < 2.2E-16), suggesting clinical applicability in Mtb infections.

Clinical validation
Clinical mutations in tuberculosis. To further validate this applicability, we subjected SUSPECT-RIF to 
the Mtb mutations reported in Miotto et al.,  201751 (n = 32), of which 25 were high confidence resistant muta-
tions, 4 were moderate confidence, and 3 were low confidence mutations. Our classifier correctly predicted the 
mutations as resistant with 96.9% accuracy and 100% precision, when compared to 90.6% accuracy and equiva-
lent precision for GeneXpert-MTB/RIF (Fig. 4B–D; Suppl. Table 3). Most mutations (n = 29) in this dataset were 
located within the RRDR, which explains comparable performance between the two methods. The only variant 
misclassified by SUSPECT-RIF was I491F, which was deemed as a low confidence mutation in the Miotto et al. 
study, showing weak clinical resistance evidence. Structurally, this mutation lies at the interface close to the 
RpoC, and RNA binding (Suppl. Figure 5), where the introduction of the phenylalanine side chain may affect 
these inter-molecular interactions differently. Introduction of this larger side chain, however, doesn’t seem to 
introduce major steric clashes. One possible reason behind this misclassification, which might explain the weak 
clinical evidence in the  Miotto51 study, is that this mutation is resistant only in specific lineages, which may not 
be appropriately captured in our model.

We then compared the performance of SUSPECT-RIF on Rif resistant Mtb mutations considered in various 
genome sequencing techniques and databases (Sanger sequencing,  CASTB57,  KvarQ58,  Mykrobe59,  PhyResSE60, 
and  TBProfiler61) curated by Schleusener et al.,  201752. For a small dataset (n = 7), detected by Sanger sequencing, 
our model successfully identified all mutations as resistant. We also carried out an analysis of a larger curated 
 dataset52 which combined well-characterized mutations from four listed genomic  tools58–61 (n = 539) compared 
in the Schleusener et al. study. Here, SUSPECT-RIF had the highest resistance detection rate of 99.4%, compared 
to 95.0% by Mykrobe, 33.0% by KvarQ, 17.3% by TBProfiler and 5.6% by PhyResSE. Of the three undetected 
mutations, I491F was only detected by PhyResSE and TBProfiler, and deemed low confidence by Miotto et al., 
further suggesting that it may be strain specific. Mutations T482P and A286V, were only considered resistant by 
TBProfiler, suggesting that they may also be strain or region specific.

Translation to leprosy. To test the applicability to other clinically relevant mycobacteria, SUSPECT-RIF 
was subjected to 42 clinical M. leprae mutations curated from the  literature53, which included a study focusing 
on a natural leprosy reservoir—the Prata village in the Brazilian  Amazon54. All resistant mutations were suc-
cessfully identified (100% Sensitivity) while the one susceptible mutation within the dataset was misclassified 
as resistant (0% Specificity). The significantly higher performance of SUSPECT-RIF when compared to RRDR-
based molecular tests (similar to GeneXpert-MTB/RIF for Mtb) on our dataset proves that the clinical utility 
of SUSPECT-RIF, although trained on Mtb data, is not limited to tuberculosis infections (Fig.  4B–D; Suppl. 
Figure 4B; Suppl. Table 3).

Translation to other infections. Next, we subjected SUSPECT-RIF to resistance mutations identified 
in two other, clinically diverse organisms where Rif is reserved as a last line treatment: P. aeruginosa (n = 18)55 
which is Gram-negative (SI: 55%) and S. aureus (n = 51)56 which is Gram-positive (SI: 61%). Despite the rela-

Table 1.  Predictive performance across training and non-redundant blind test sets. Numbers show 
performances throughout the whole gene, and outside of the rifampicin resistance determining region 
(RRDR). Performance on mutations within the RRDR was equivalent, with 100% sensitivity and 0% specificity 
(no susceptible mutations present).

Metric Sensitivity Specificity MCC F1 score Accuracy Precision

All
Training (n = 231) 89.7% 100% 0.72 0.90 90.9% 100%

Test (n = 88) 100% 57.1% 0.71 0.91 89.8% 88.2%

Non-RRDR
Training (n = 193) 87.9% 100% 0.72 0.94 89.6% 100%

Test (n = 39) 100% 76.2% 0.77 0.88 87.2% 78.3%
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tively low sequence identities compared to Mtb RpoB, our model could correctly detect all resistant mutations 
in P. aeruginosa (100% Sensitivity), while only missing three S. aureus mutations (94.1% Sensitivity). Notably, 
two of these S. aureus mutations are present at residue 527, which is equivalent to residue 491 for Mtb. Misclas-
sification at this residue might therefore be due to misrepresentation of lineages within our model, as discussed 
previously. These results (Fig. 4B–D; Suppl. Table 3) further demonstrate how using an initial understanding 
of molecular mechanisms in one organism (Mtb) as a basis for classification (SUSPECT-RIF) can be robustly 
translated to other structurally and pathogenically diverse organisms.

Figure 4.  Performance comparison between SUSPECT-RIF and the gold-standard GeneXpert-MTB/RIF. 
(A) The ROC curve shows superior performance of SUSPECT-RIF in successfully distinguishing between 
RIF-susceptible and resistant mutations on the M. tuberculosis dataset (n = 319) achieving an AUC of 0.95, 
significantly outperforming GeneXpert (AUC of 0.66, p-value < 2.2E-16). When comparing performance of 
the two tools across all the different validation datasets, through Accuracy (B), Sensitivity (C) and F1 Score 
(D) metrics, we show that SUSPECT-RIF significantly outperforms GeneXpert-MTB/RIF across all measures 
tested, and across all tests. Notably, the highest significance was for the was achieved for the large M. tuberculosis 
(n = 319) test, and the M. leprae (n = 42) tests. The least significant results across all metric tested were for Miotto 
et al.test, primarily because most of these mutations (90.6%) are present within the RRDR, showing comparable 
performance to the gold standard. As for the P. aeruginosa and S. aureus mutational sets, lower significance 
values across the metrics, leading to non-significance when considering F1 Score, is thought to be a direct result 
of sample size and proportion of mutations in RRDR (66.7% and 70.6% respectively). All significance tests were 
computed using a two-tailed z-test with continuity correction.
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SUSPECT‑RIF: Web server
SUSPECT-RIF has been implemented as an interactive web-server, which is freely available to the clinical and 
research community at: https ://biosi g.unime lb.edu.au/suspe ct_rif/. Our website allows prediction and visualiza-
tion of missense mutation phenotype, within M. tuberculosis, M. leprae, P. aeruginosa and S. aureus. User input 
requires the missense mutation, given as an XnY code where X is the one-letter-code wildtype residue, n is the 
residue position according to organism structure numbering and Y is the one-letter-code mutant residue. We 
have included the FASTA sequences of the different organisms displayed, as these sequences refer to the number-
ings used in our protein structures. The user input can either be carried out as a single mutation or as a mutation 
list, with the different outputs shown in Suppl. Figure 6. Single mutational analysis exhibits the phenotype as 
classified by our model, mutational information regarding local environment, as well as an interactive molecular 
viewer built using NGL  Viewer62. Users can compare changes of interatomic interactions across wild-type and 
mutant structures in the 3D viewer and download it as a PyMOL session. The results from the mutational list 
input are exhibited as a summarized list of phenotype and local environment values, with an interactive viewer 
showing all mutations mapped across the RpoB protein. Links are also available for every mutation within the 
list to be evaluated and visualized separately.

Discussion
Our earlier work in analysing resistance mutations in TB has shed light towards the complex phenomena underly-
ing resistance to  Rif19, mainly because of the different interactions occurring at the transcription cleft. Predomi-
nantly, Rif resistance mutations in TB disrupt affinities between the target RpoB and other RNA polymerase 
subunits, as well as nucleic acids within the cleft. When the same methodology was applied across another 
mycobacterium (M. leprae) and a Gram-negative rod (P. aeruginosa), similar mechanistic effects of resistance 
were delineated. Within the context of the RNA polymerase complex, predominant disruptions at the interface 
affecting protein–protein and protein-nucleic acid interactions may lead to a lower steric effect imparted by Rif at 
the structural level. This effect might be overcome in vivo through compensatory mutations, which have already 
been reported for Mtb within gene rpoC20,21. At the protein level, such mutations can strengthen the interactions 
between RpoB, RpoC, and nucleic acids to retain the transcription functioning of the RNA polymerase complex 
and circumvent the steric and consequential nucleic acid affinity-reducing effect of Rif. As for our analysis on 
the Gram-positive coccus S. aureus, the main mechanistic driver of Rif resistance is a loss of ligand affinity. This 
is thought to be primarily because most mutations within our dataset occur within 10 Å of Rif binding (with 
70.6% occurring within the RRDR). This overall mechanistic pattern may also explain the slightly lower perfor-
mance of SUSPECT-RIF on S. aureus mutations, where features describing protein-nucleic acid affinity are more 
highly accounted for than those for ligand affinity. Finally, no primary mechanism could be seen upon analysis 
of susceptible mutations (available for M. tuberculosis and M. leprae). This gave us a solid understanding to base 
machine learning principles in building a diagnostic resistance tool.

Here, we introduce our diagnostic tool, SUSPECT-RIF, which does not assume resistance on mutational gene 
location, but accounts for the differences in underlying molecular mechanisms imparted by resistance mutations 
compared to susceptible ones. Our tool is built on features describing local mutational environment, interactions, 
flexibility and conservational effects. We have shown that this combination of features achieves high performance 
in detecting resistance mutations in an independent clinical M. tuberculosis  dataset51 with a comparable RRDR 
performance to the current gold standard, but also beyond this region. This is especially important considering 
that resistant mutations outside this region are currently being missed. Overall, SUSPECT-RIF can correctly 
classify 90.9% of all Mtb mutations within our dataset. We tested the robustness of SUSPECT-RIF in detecting 
well-characterized Mtb mutations from whole genome  databases52 where it outperformed all  databases58–61 tested, 
with an accuracy of 99.4%. When considering protein structural effects, where only coding mutations can be 
analysed, these metrics are also comparable to a whole genome sequencing-based predictor (accuracy: 95.1%)63, 
which is built on larger datasets. This latter tool possibly also includes variation within non-coding regions (raw 
data not available for comparison)63 which cannot be assessed through our method. Apart from comparable 
accuracy in Mtb, SUSPECT-RIF has proven effective in identifying resistance mutations in RpoB across another 
mycobacterium (M. leprae), but also in Gram-positive (S. aureus) and Gram-negative (P. aeruginosa) organ-
isms where Rif is clinically used. Notably, its robustness in detecting Rif resistance in leprosy makes it the first, 
genetic-based test for resistance in M. leprae. This, given the WHO Global Leprosy  Strategy64 is crucial in early 
detection of Rif resistance and appropriate patient therapy—as it improves rates of survival, as well as minimizes 
further resistance development. Further to that, its clinical applicability in non-mycobacteria has been achieved 
in spite of low sequence identity with Mtb, making SUSPECT-RIF the first structure-based diagnostic tool which 
consistently performs across bacterial species. This highlights the power and broad applicability of this approach 
for predicting resistance from both  clinical65,66 and drug development  perspectives67–70.

SUSPECT-RIF relies on an interplay of different features (Suppl. Table 1) describing changes in interaction 
affinities of RpoB with other proteins, nucleic acids and ligand Rif, as well as changes in stability, flexibility (defor-
mation and fluctuation) and residue level changes in interactions. When analysed on their own, some features 
offer negligible contribution to the model. However, these were retained as they are thought to work in synergy 
with other molecular properties. One feature which was not tested in our model was bacterial lineage associated 
with each mutation. During data curation, different sources of data were used, where lineage information was 
not always present. Because of this, it is thought that our misclassified mutations were lineage-specific, where 
the same mutation in different lineages may not always be resistant. To address this, we segregated our datasets 
according to source, where we have trained our model on lineage representative  LSHTM15 mutations, and tested 
with non-redundant, literature-identified datasets. This was our approach in obtaining a general lineage classifier, 
given the limitation of lineage information. Another feature which was not tested was the Minimum Inhibitory 
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Concentration (MIC), which quantifies the degree of resistance conferred by each mutation. As with lineage 
information, MIC values were not consistently available for all the mutations used in model development, which 
may also explain some misclassifications by our model. Finally, although rpoB mutations have been shown to 
have epistatic effects both within RNA polymerase (rpoC20,21) and with another TB-drug target gyrA71,72, which 
binds TB second-line drug Ofloxacin, we did not have enough data across our whole mutation list to be able to 
account for epistasis within our model.

When considering overall model performance, our model was consistently more robust in predicting resist-
ance mutations (higher sensitivity) than susceptible mutations (specificity). Although the identification of sus-
ceptible mutations in the clinic enables the confirmation of safe Rif use, it is more important for our classifier to 
identify resistance mutations as efficiently as possible. Clinically, this high sensitivity in identifying resistance 
mutations implies that patients infected with a resistant strain are not given Rif unnecessarily, reducing the 
chance of related toxicities to the patient, quicker access to more effective treatment, and unnecessary costs to 
the healthcare system.

Our tool, SUSPECT-RIF is freely-available on an interactive website (https ://biosi g.unime lb.edu.au/suspe 
ct_rif), only requiring a list of missense mutations to be analysed by the clinician or researcher. Quick iden-
tification of rifampicin resistance, especially in TB and leprosy where it is part of the backbone regimen is 
crucial for effective treatment, with subsequent avoidance of unnecessary drug toxicities and further resistance 
development. Resistance-identification using SUSPECT-RIF only depends on the time, cost and availability of 
genome sequencing techniques, and an internet connection. Further to this, our tool has also been successful 
in the non-mycobacterial pathogens S. aureus and P. aeruginosa, where Rif is reserved for MDR cases. Our tool 
shows robust performance in both organisms, making it translatable to both Gram-positive and Gram-negative 
clinical infections where Rif is used in poly-resistance. This applicability across diverse, clinically relevant organ-
isms demonstrates the potential significance SUSPECT-RIF has in Rif stewardship efforts. Further to this, the 
robustness with which SUSPECT-RIF classifies Rif resistant and susceptible mutations provides a good basis for 
the development of a universal rifampicin resistance predictor.

Methods
M. tuberculosis mutational dataset. A dataset containing both resistant and susceptible mutations 
within gene rpoB was curated from different sources. For the training set, we obtained mutational informa-
tion from the London School of Hygiene and Tropical Medicine in-house database. This included resistance 
mutations (n = 203) identified through a genome-wide association study carried out on 6,697 clinical  isolates15 
and (n = 28) susceptible mutations. A non-redundant test set was manually curated from online databases 
 TBDreamDB36,  tbvar37 and  GMTV38. Resistant mutations (n = 67) were obtained from all three sources while 
susceptible mutations were only available from the GMTV database (n = 21). Notably, mutations were clustered 
at, but not restricted to the RRDR, but also spread throughout the gene and protein structure (Suppl. Figure 1B).

Translation mutational datasets. The ability of our Mtb-trained classifier to correctly predict resistance 
mutations was also tested in other organisms, including M. leprae, S. aureus and P. aeruginosa, in order to assess 
its translational capabilities. Resistance mutations for these three organisms were obtained from the literature, 
where sources ranged from clinical isolates in M. leprae (n = 42)53,54, to genome sequencing of resistant colonies 
in S. aureus (n = 51)56 and an analysis on background variation epistasis on fitness cost in P. aeruginosa (n = 18)55. 
Notably, all three mutational datasets were comprised of resistance mutations, except for the M. leprae dataset 
which contained 41  resistant53,54 and one susceptible  mutation54.

M. tuberculosis Protein structure. The experimental crystallographic structure of the M. tuberculosis 
RNA Polymerase complex was obtained from the RCSB database under the PDB id:  5UHC35. This complex is 
comprised of 6 chains denoting subunits α1 (rpoA), α2 (rpoA), β (rpoB), β’(rpoC), SigA (rpoD) and ω (rpoZ). Rif 
is bound at subunit β (rpoB), while the transcribed DNA is present at the cleft between subunits β (rpoB) and 
β’(rpoC). With a crystal structure resolution of 3.796 Å and  Rfree value of 0.267, the structure was considered 
of adequate quality as a base for our clinical classifier. Resistance to Rif is brought about by missense muta-
tions localizing on the gene rpoB, which codes for the β-subunit. Prior to feature generation, the structure was 
checked for missing atoms and residues using the Protein Preparation wizard in Prime (Schrodinger suite). A 
total of 23 missing atoms were inserted across the full Mtb RNA polymerase structure, 8 of which were present 
in the β-subunit (rpoB). During the subsequent feature generation stage, all calculations were carried out on the 
β-subunit to encompass local wild type environment and its respective changes upon introduction of mutations.

Homology modelling of M. leprae, S. aureus and P. aeruginosa RNA Polymerase. The RNA Pol-
ymerase complexes of M. leprae, S. aureus and P. aeruginosa had not been experimentally determined at the time 
of study. To accurately test translation of our structure-based classifier, homology models of the whole complex 
were built on PDB id:  5UHC35 as template, using the Advanced Homology Modelling Wizard within Maestro 
(Schrodinger suite). Due to lower sequence identities with M. tuberculosis subunits within S. aureus and P. aer-
uginosa, initial sequence alignment was carried out by comparing results from MAFFT-DASH73, T-COFFEE74 
and Clustal-W75 (embedded within Maestro). Alignments were manually curated to optimise sequence identity 
and gap penalties. Initial models were analysed through  MolProbity76,77 and the embedded protein analysis tools 
in Maestro. Loop refinement and minimization within Maestro were used as necessary to minimize the number 
of clashes within different RNA polymerase subunits.

https://biosig.unimelb.edu.au/suspect_rif
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Feature generation. All features were calculated on the wild-type RNA polymerase β-subunit of the four 
different organisms. For specific features where the mutant structure was required (Arpeggio), this was gener-
ated using  MODELLER78. A total of 298 features were tested to account for the major biological changes brought 
about by missense mutations. These were subdivided into five feature classes:

1. Graph-based  signatures49,50: were calculated to represent the wildtype protein structure, capturing both 
topology and physicochemical properties of the protein by modelling mutated sites as nodes which are con-
nected by edges at different interatomic distance patterns

2. Local environment: Descriptors of wild-type protein secondary structure prediction  (SST46, IUPRED and 
 Anchor47), relative surface area, residue depth and Phi/Psi angles were calculated to account for local residue 
environment prior to mutation. The impact of missense mutations on protein stability (mCSM-Stability26, 
 DUET27,  SDM28), flexibility (fluctuation, deformation energies—Bio3D48), and dynamics (normal mode 
analysis—ENCoM30,  DynaMut29) were calculated to account for structural changes. Finally, in order to 
model the effects of mutations on intramolecular interactions, inter-residue contacts on wild-type and mutant 
structures were calculated using  Arpeggio45.

3. Interactions: The effect of missense mutations on protein affinities to Rif (mCSM-lig31), nucleic acids within 
the transcription cleft (mCSM-DNA26, mCSM-NA33) and the other RNA polymerase subunits (mCSM-
PPI26) was generated using the mCSM-suite of computational tools. Finally, distances to these interacting 
molecules (Rif, nucleic acids and RNA polymerase subunits), along with distance to  Mg2+ and  Zn2+ within 
the cleft were calculated.

4. Pharmacophore: Changes in number of hydrophobic atoms, hydrogen donors and acceptors and positive 
and negative charges upon introduction of mutations were calculated.

5. Conservation: Sequence-based scores from  SIFT39,40,  SNAP242,  PROVEAN41 and  ConSurf43 were calculated 
to account for conservational changes. Calculations based on the  aaindex44 and substitution matrices (PAMs, 
BLOSUMs) were introduced to account for physicochemical amino acid properties and evolutionary prob-
abilities, respectively.

Qualitative and statistical analysis. A qualitative analysis was performed on predictions for protomer 
stability (DUET), ligand affinity, nucleic acid affinity and RNA polymerase complex stability (mCSM-PPI) on 
all the mutations within the different datasets, in a manner previously  described19. Briefly, these measurements 
were compared for every mutation within the dataset and the predominant mechanisms being affected was 
assigned to each mutation based on the extent of destabilizing effect. Effects were prioritized in order of size: 
mCSM-lig, mCSM-NA, mCSM-PPI and mCSM-Stability. This was done in order to adequately account for 
all types of protein-interactions, irrespective of interacting partner size. To statistically identify features which 
distinguish between the two phenotypes (resistant and susceptible) we also carried out a two-sided Welch sam-
ple t-test on the Mtb dataset mutations, using a cut-off p-value of < 0.05, using the ggsignif package in Rstudio. 
All remaining comparisons between different proportions, such as the comparison of performances between 
SUSPECT-RIF and GeneXpert-MTB/RIF, and comparisons of mechanistic effects of resistance between different 
organisms were carried out using a two-sided ztest with continuity correction, through the prop.test function in 
Rstudio, with a 0.95 confidence level.

Machine learning. Machine learning was carried out using the sci-kit learn package on representative 
classification algorithms: Linear Classifiers (Gaussian, Multinomial and Complement Naïve Bayes, Stochastic 
Gradient Descent), Decision Tree, Nearest Neighbours (KNN), Support Vector Machines (SVM) and Ensem-
ble Classifiers (Random Forest, Extra Trees, AdaBoost and GradientBoosting). To counteract the imbalance 
between resistant and susceptible mutations within the training dataset, different levels of oversampling (nOS = 0 
to nOS = 6) were tested for each algorithm at each stage of the training and optimisation process. Each trained 
model was subjected to a non-redundant blind test described above. The different graph-based signatures (based 
on different distance patterns) and substitution matrices generated were initially tested separately to identify any 
significant performance in the resulting classifier. The best graph-based signature and matrix were subsequently 
added to the other features for further iteration. All models were analysed and prioritized according to consist-
ency in Matthew’s Correlation Coefficient (MCC) results between training set and test set. The confusion matrix 
of each model in predicting the phenotype of the independent test set values was also considered, where the 
number of falsely-predicted values was as low as possible – thereby optimising final model sensitivity, specific-
ity and accuracy at every stage of the process. The nearest neighbour (k = 5) algorithm was consistently the best 
classifier at all levels of oversampling and was chosen for further parameter optimisation (k = 1, 3, 5, 7, 9, 11, 13, 
and 15), of which, the model with k = 3 at one level of oversampling consistently gave the best performance and 
was chosen as the algorithm for SUSPECT-RIF.

Feature selection. As a final optimization, all the features (n = 298) generated using the methods previously 
described were subjected to a bottom-up greedy feature selection process using sci-kit learn. Prior to this, a 
manual removal of statistically redundant features was carried out, as this would introduce noise to the predic-
tion of novel mutations. Greedy feature selection initially trains and tests all the features individually. The best 
feature is retained, and combined with the remaining features individually, to identify the feature which reaches 
the best performance at each iteration. This process continues until all features are included. Model performance 
was ranked according to MCC where the best model was again chosen based on MCC consistency between train 
and blind test, to eliminate the risk of model overfitting leading to biased predictions towards resistance (larger 
dataset).



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18120  | https://doi.org/10.1038/s41598-020-74648-y

www.nature.com/scientificreports/

Website. The SUSPECT-RIF server front-end was built on the materialize CSS framework version 1.0.0, 
while the back-end was built in Python 2.7 via the Flask framework (version 0.12.2). It is hosted on a Linux 
server running Apache.
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