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Structure guided prediction of 
Pyrazinamide resistance mutations 
in pncA
Malancha Karmakar1,2,3, Carlos H. M. Rodrigues   1,2, Kristy Horan4, Justin T. Denholm3 & 
David B. Ascher   1,2,5*

Pyrazinamide plays an important role in tuberculosis treatment; however, its use is complicated by 
side-effects and challenges with reliable drug susceptibility testing. Resistance to pyrazinamide is 
largely driven by mutations in pyrazinamidase (pncA), responsible for drug activation, but genetic 
heterogeneity has hindered development of a molecular diagnostic test. We proposed to use 
information on how variants were likely to affect the 3D structure of pncA to identify variants likely to 
lead to pyrazinamide resistance. We curated 610 pncA mutations with high confidence experimental 
and clinical information on pyrazinamide susceptibility. The molecular consequences of each 
mutation on protein stability, conformation, and interactions were computationally assessed using 
our comprehensive suite of graph-based signature methods, mCSM. The molecular consequences 
of the variants were used to train a classifier with an accuracy of 80%. Our model was tested against 
internationally curated clinical datasets, achieving up to 85% accuracy. Screening of 600 Victorian 
clinical isolates identified a set of previously unreported variants, which our model had a 71% 
agreement with drug susceptibility testing. Here, we have shown the 3D structure of pncA can be used 
to accurately identify pyrazinamide resistance mutations. SUSPECT-PZA is freely available at: http://
biosig.unimelb.edu.au/suspect_pza/.

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of infectious disease death world-
wide. In 2017, 10 million people fell ill, and 1.6 million died, from tuberculosis1. While a range of antibiotics 
are available to treat TB, treatment is prolonged, and the increasing emergence of drug-resistant bacteria is a 
considerable threat to global health. In 2017 alone, an estimated 558,000 people developed multi-drug-resistant 
tuberculosis (MDR-TB), resistant to the two first-line drugs rifampicin and isoniazid1.

Pyrazinamide (PZA) is a first-line drug that exhibits unique sterilizing activity towards both drug-susceptible 
and MDR-TB2. It is responsible for the killing of the persistent tubercle bacilli during the initial intensive phase 
of chemotherapy, allowing treatment to be shortened from 9 months to 6 months for drug susceptible cases3. 
PZA therapy has been linked to improved outcomes for both non-MDR and MDR-TB, and is being considered 
as part of the future regimens in combinations with bedaquiline, delamanid, PA-824 and moxifloxacin, which are 
currently in phase three trials4,5.

Despite the highly important role of PZA in clinical outcomes, resistance has largely been underestimated, 
with up to 20% of non-MDR-TB patients PZA resistant6. Being a central drug in current and future regimens, it 
is important to be able to rapidly and accurately identify resistant isolates and track the emergence and spread of 
drug resistant strains. In vitro drug susceptibility testing (DST) is challenging, expensive and time-consuming as 
PZA is effective against M. tuberculosis only at acidic pH, leading to false resistance rates of up to 70%7–13. This has 
led to the WHO recommending the development of molecular genetics tests.

PZA is a structural analog of nicotinamide and is a pro-drug that needs to be converted into its active form, 
pyrazinoic acid (POA), by the non-essential enzyme pyrazinamidase, encoded by the pncA gene14,15. It has been 
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postulated that the mechanism of action of PZA is through POA, which disrupts the bacterial membrane energet-
ics and inhibits the membrane transport function which is necessary for the survival of the bacterium, at an acidic 
site of infection16. PZA resistance has been linked to mutations in a number of genes, including pncA, rpsA17, 
panD18, clpC119, and the putative efflux pumps Rv0191, Rv3756c, Rv3008, and Rv1667c20, but mutations in pncA 
are the major mechanism for PZA resistance (70–97%)21. While sequencing the pncA gene can be a more reliable 
method to determine resistance than DST, which is prone to missing low-level pyrazinamide resistance caused by 
non-synonymous mutations in pncA22, the development of a genetics based resistance screen is complicated as 
resistant and non-resistant mutations are found across the entire protein.

To solve the problem of a reliable DST for PZA, we previously showed that protein structural information can 
be used in a clinical setting to rapidly, accurately and pre-emptively predict drug resistant mutations in pncA23. 
This showed that mutations that affected protein folding, flexibility, stability and activity were strongly associated 
with resistance. Here we have used a comprehensive combination of structure and sequence-based features to 
develop a predictive tool to characterize novel PncA mutations, which we tested on novel mutations from the 
Victorian Tuberculosis Program, CRyPTIC24 and Miotto et al. dataset25. This highlights the potential of using 
structural information to guide the genetic detection of resistance. We have implemented our model through the 
webserver SUSPECT-PZA (http://biosig.unimelb.edu.au/suspect_pza/), which will enable the rapid structural 
evaluation of the molecular and phenotypic consequences of any pncA nonsynonymous mutation to support 
informed clinical decisions.

Results
We used a structure-guided approach to understand the structural and functional consequences of variants in 
the drug target PncA, and machine learning to build an empirical tool that could identify likely resistant muta-
tions. The workflow used to analyze the mutations and train a Random Forest algorithm is shown in Fig. 1 and it 
comprises three major steps: (1) data curation, which can be subdivided into mutational data set acquisition and 
protein structure curation; (2) feature analysis, which involves the generation and evaluation of features selected 
to develop the predictive model to determine novel drug resistance mutations in PncA; (3) machine learning and 
webserver development, which aims to train, test and validate a supervised machine learning algorithm to accu-
rately predict the susceptibility of the variant followed by a database (SUSPECT-PZA) which has information for 
all possible variants of PncA.

Distribution of the mutations on the structure.  We curated a dataset of 1322 nonsynonymous substi-
tutions with high quality experimentally measured PZA susceptibility (71 susceptible mutations from GMTV26, 
12 resistant mutations from GMTV26, 178 resistant mutations from TBdreamDB27, Fig. 2A, 547 resistant and 514 
susceptible mutations from experimental saturation mutagenesis28). After removal of duplicate mutations, we 
were left with a dataset of 610 mutations, which included 305 susceptible and 305 resistant mutations. Mapping 
the complete set of curated 610 nsSNVs (Fig. 1) and just the clinical variants only (Fig. 2B) onto the crystal struc-
ture of PncA revealed that variants were distributed throughout the entire protein structure, complicating resist-
ance inference from sequence analysis. We also observed that the resistance mutations were not solely localized 
at the drug binding site but distributed throughout the protein (Fig. 2C).

Figure 1.  Methodology workflow. The methodology can be divided into three steps. In step 1, data is collected 
and curated from various tuberculosis databases and articles with experimental evidence like availability of DST 
results or high-precision laboratory screening study. The curated mutations are shown across both the protein 
sequence and 3D structure, respectively. The protein sequence and structure of PncA is colored by whether 
resistant (red) or susceptible (blue) mutations have been observed at that location. Highlighting the difficulty 
of genomic analysis of pncA, both resistant and susceptible mutations have been observed across many residue 
positions (cyan). In step 2, effects of mutations on protein stability, dynamics, complementary information 
regarding the environment characteristics of the wild-type residue (e.g. relative solvent accessibility, residue 
depth and secondary structure), PZA binding affinity are calculated using different in-silico tools. Step 3, all 
the features are used as evidence to train a supervised machine learning algorithm and after evaluating the 
performance of the predictive model, the consensus predictions are integrated into a server and can be used to 
guide clinical resistance detection.
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PncA is a small protein molecule which constitutes of 186 amino acids. The experimental crystal structure 
of the drug (PZA) bound to the enzyme (PncA) was unavailable. Therefore, PZA was ab initio docked into the 
experimental crystal structure of the holo-wild-type PncA protein (PDB ID: 3PL129). The docked structure 
revealed that PZA formed key interactions within the proteins active site, which includes the catalytic triad (Asp8, 
Lys96, and Cys138), substrate-binding residues (Trp68 and Phe13), and the iron center (Asp49, His51, His57, and 
Fe 21). Analysis of the molecular interactions with Arpeggio30 highlighted a strong network of polar and π- inter-
actions between PZA and PncA (Fig. 2D).

Structural, biophysical and evolutionary consequences of PncA mutations.  Looking at the 
SNAP231 and PROVEAN32 scores, which consider evolutionary information to predict functionally important 
nonsynonymous mutations, we observed that resistant mutations were always associated with deleterious scores, 
while susceptible mutations were scored neutral (Table S1; Fig. 3). This suggest that although mutations were 
spread throughout the protein, mutations associated with resistance were having a stronger effect on the structure 
and function of the protein.

The wild-type environment also provided information to differentiate between resistant and susceptible muta-
tions, which included relative solvent accessibility (RSA), residue depth and secondary structure of the wild-type 
residue (Table S1; Fig. 3). This showed that resistant mutations tended to be found at buried residues that were 
less solvent exposed (average RSA of 0.18 for resistant mutations compared to 0.39 for susceptible; average residue 
depth of 1.09 Å for resistant mutations compared to 0.75 Å for susceptible; Table S1). These values were consist-
ent with susceptible mutations being in regions that have milder effects on protein stability and activity than the 
resistance mutations.

The impact of the resistant and susceptible mutations on protein folding, stability and conformation were 
assessed using biophysical tools which relies on graph-based signatures to calculate the change in Gibb’s free 
energy, like mCSM-Stability33, DUET34 and DynaMut35. The effect of the mutations on the binding affinity for 
PZA were assessed using mCSM-Lig36. We observed that resistant mutations led to large decreases in PncA sta-
bility and conformational flexibility, while susceptible mutations were associated with milder changes (Table S1; 
Fig. 3). This is consistent with what we have observed previously for non-essential and drug activating proteins37. 
While resistant mutations, however, tended to be located closer to the PZA binding site (average < 10 Å from the 
PZA; Fig. 3), we did not see a significant difference in the distribution of the effects of resistant and susceptible 
mutations on PZA binding affinity (Table S1, Fig. S2), likely due to the importance of other molecular effects 
leading to resistance.

Machine learning to predict PZA resistance.  Building on this structural and sequence-based analysis, 
we tested whether the information generated from these features could be used to train a supervised machine 
learning algorithm capable of accurately predicting resistant mutations in PncA. We grouped our features into 
five distinct categories: stability, dynamics, evolutionary conservation, ligand interactions and backbone geome-
try (structural environment). The performance of predictive models trained on each class of feature was evaluated 

Figure 2.  Distribution of clinical resistant and susceptible mutations in PncA. (A) Venn diagram representing 
the distribution of clinical mutations in the different datasets used to build the predictive model. (B) Clinical 
resistant and susceptible mutations mapped on the crystal structure. Amino acid positions where both 
susceptible and resistant mutations were seen are colored in cyan and emphasizes the need for a better and 
improved tool to classify them accurately. (C) Surface view of PncA with the docked PZA (yellow, ball and stick 
representation). Clinical resistant mutations, shown in red, are not just located at the PZA binding site, but are 
spread equally throughout the whole protein. (D) Molecular interactions between PZA (yellow sticks) and the 
surrounding amino acids which are part of the catalytic triad (Asp8) and substrate binding site (Trp68, Phe13). 
Hydrogen bonds are shown as blue dashes, and π-interactions as green dashes.
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separately to explore the contribution of each class to the predictive model (Table S2; Fig. S2). We were able to 
confirm that the individual categories of features did not yield a good metric for a reliable predictive model, but 
in combination using 10-fold cross-validation, models trained using Random Forest algorithm yielded a more 
balanced and accurate performance, highlighting the synergistic effect of these features. The final model correctly 
classified 80.1% and 72.3% of mutations in the training and blind datasets, respectively (Fig. 4; Table 1). The com-
parative performance across iterative non-redundant blind datasets suggested that the model was not overfitted.

Analysis of our model revealed that PncA-resistant mutations were associated with large changes in pro-
tein folding and stability (mCSM-Stability scores < −0.9 Kcal/mol; p < 0.0001, Welch Two Sample t-test) and 
conformational flexibility (DynaMut score < 0.78 Kcal/mol; p < 0.0001, Welch Two Sample t-test) or located in 
close proximity to the catalytic triad and substrate-binding site (<10.8 Å; p < 0.0001, Welch Two Sample t-test). 
Alternatively, susceptible mutations had a relative b-factor value of ≥3.19 (p < 0.0001, Welch Two Sample t-test), 
residue depth of ≥0.9 (p < 0.0001, Welch Two Sample t-test), distance from PZA greater than 11.9 Å and mild 
effects on protein stability (SDM scores ≥ 2.68 Kcal/mol; p < 0.0001, Welch Two Sample t-test).

Validation using Clinical Datasets.  We next validated our model using variants reported in the recently 
published CRyPTIC dataset24. 355 pncA nsSNVs associated with PZA resistance were reported, of which 75 were 
not present in our training dataset. Our model correctly classified 79.2% of the mutations across the whole dataset 

Figure 3.  PCA analysis of key molecular features distinguishing resistant and susceptible mutations. Features 
used for model building are represented as boxplots for explanatory data analysis. The resistant associated 
mutations (R) are represented as red and the susceptible mutations (S) as blue. (***p < 0.0001, Welch two 
sample t-test).

Figure 4.  Evaluation Metric for machine learning. Receiver Operating Characteristic (ROC) curves of PZA 
classifier obtained using the structural and functional consequences of the mutations to accurately identify 
resistant (red) and susceptible (blue) mutations. (AUC = area under the curve).
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(355 mutations), and 72.0% of those non-redundant in amino acid position with the training data (75 mutations). 
The positive predictive value was 94.7% (95% CI [92.5% to 96.2%]).

We also validated our empirical classifier using the dataset reported by Miotto et al.25, which contained 98 
nsSNVs graded by the confidence of their association with phenotypic drug resistance. 44 out of the 98 nsSNVs 
reported in the paper were not present in our training dataset. We accurately predicted the drug susceptibility of 
84.8% of the polymorphism across the whole dataset (98 mutations), with an accuracy of 79.5% for those muta-
tions not included in the training data (44 mutations). The positive predictive value was 95.4% (95% CI [92.1% 
to 97.3%]). We observed mutations such as Q10P (21 cases reported), W68G (16 cases reported) and I133T (17 
cases reported) with 0.98 probability associated with resistant phenotype22 and categorized as high confidence 
for association with resistance, moderate confidence for association with resistance and minimal confidence for 
association with resistance respectively25 were all classified as resistant by our predictive model, highlighting the 
sensitivity of the prediction.

Mutations reported by Miotto et al.25 under the “no association with resistance” category, including I31T, L35R 
and T47A were predicted as resistant, and I6L as susceptible. This is consistent with the available experimental 
data24,28, highlighting the advantage, accuracy and versatility of our approach. A closer look into the different bio-
physical scores for the resistant associated mutations revealed that they had large predicted destabilizing values 
for protein conformational flexibility (I31T, −2.49 Kcal/mol) and stability (I31T, −3.46 Kcal/mol) and one was 
located very close to the catalytic triad (T47A, <6 Å).

Our predictive model was further validated on PZA DST screening at 100 μg/ml of clinical isolates from 
culture collections at Stellenbosch University, South Africa (865 isolates) and the Centers for Disease Control 
and Prevention (CDC), Atlanta, USA (185 isolates)38. They identified 49 isolates with a susceptible phenotype 
containing 8 nsSNVs. All nsSNVs with an MIC < 50 μg/ml were correctly classified by our model as susceptible 
(E37V, D110G, T114M). Whitfield and colleagues suggest that those isolates with an MIC > 50 μg/ml should be 
considered clinically resistant, of which our model classified three as resistant (A170V, V130A and L35R) and two 
as susceptible (V163A and V180I). Overall, our model had a 75% agreement with the DST results and a positive 
predictive value of 100%

Application within a Clinical Setting.  In a prospective genomic sequencing and DST analysis of over 600 
Victorian clinical TB isolates, 7 pncA variants were detected in 11 variants phenotypically resistant to PZA, none 
of which were present in our training dataset. Our model correctly classified five out of seven variants as resistant 
(71.4% accuracy). The remaining two mutations, G108V and Q10H, which were susceptible according to the DST 
results were predicted to confer resistance and consistent with other experimental findings24,25,28. Both variants, 
had a SNV frequency of <0.5, which is known to impact upon the reliability of the DST results. This highlights 
the potential clinical power of our model.

Expanding our analysis, four additional pncA mutations (S104R, V128G, Y95R and E15A) were identified 
in Victorian clinical TB isolates lacking DST results. Both S104R and V128G were predicted as resistant by our 
model, consistent with previously reported DST results24–28. The remaining two mutations, Y95R and E15A, have 
not been reported previously. Our model suggests both mutations to confer susceptibility to PZA.

SUSPECT-PZA webserver.  We have developed a user-friendly, freely available web server SUSPECT-PZA 
(StrUctural Susceptibility PrEdiCTion on PZA), http://biosig.unimelb.edu.au/suspect_pza/, which is a data-
base for all possible variants of PncA. There are two different input options (Fig. S2): the first one is the “Single 
Mutation” option which allows the users to input one mutation for analysis. The basic format required by the 
server for this input option is that the mutation must be specified as a text string containing the wild-type res-
idue one-letter amino acid code, its corresponding position on the structure and the mutant one-letter amino 
acid code. The second option is the “Mutation List”, which allows the user to upload a list of mutations, in the 
same specified format as above but in a file for batch processing (Fig. S3). Sample submission entries are available 
to assist users to submit their mutations for analysis and an additional help page via the top navigation bar.

Total 
nsSNVs

Resistant 
nsSNVs

correctly classified variants 
SUSPECT-PZA (%)

Susceptible 
nsSNVs

correctly classified variants 
SUSPECT-PZA (%)

PPV (%) (95% 
CI)

Accuracy 
(%)

Training dataset (70%) 426 213 159 (74.5) 213 182 (85.5) 83.7 (78.6–87.8) 80.1

Blind test dataset (30%) 184 92 56 (60.8) 92 77 (83.7) 78.9 (69.5–85.9) 72.3

CRyPTIC dataset24 355 325 266 (81.8) 30 15 (50.0) 94.7 (92.5–96.2) 79.2

CRyPTIC novel nsSNVs 75 67 67 (74.6) 8 4 (50.0) 92.6 (86.0–96.2) 72.0

Miotto et al. dataset25 98 92 82 (89.1) 6 2 (33.3) 95.4 (92.1–97.3) 84.8

Miotto novel nsSNVs 44 43 35 (81.4) 1 0 97.2 (96.8–97.6) 79.5

Stellenbosch University 
and CDC, USA nsSNVs38 8 5 3 (60.0) 3 3 (100) 100 75.0

Victorian TB novel 
nsSNVs 7 4 4 (100) 3 1 (33.3) 66. 7 (47.3–81.7) 71.4

Table 1.  Evaluation metrics across the train and blind test datasets. Accuracy = (TP + TN)/(TP + TN + FP + FN); 
TP: True positives, TN: True Negatives, FP: False Positives, FN: False Negatives PPV: Positive predictive value, 
predicting PZA resistance (nsSNVs - non-synonymous single nucleotide variant).

https://doi.org/10.1038/s41598-020-58635-x
http://biosig.unimelb.edu.au/suspect_pza/


6Scientific Reports |         (2020) 10:1875  | https://doi.org/10.1038/s41598-020-58635-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 5 shows a snapshot of the output page for the “Single Mutation” option. The web server displays the 
prediction outcome (Resistant / Susceptible) along with details of the user input data, information on the wildtype 
residue environment and features used for prediction. In addition, there is an interactive 3D viewer, built using 
NGL39, which allows analysis of non-covalent inter-residue interactions for the position specified in the input 
calculated using Arpeggio30 for both wild-type and mutant structures. The results for the “Mutation List” option 
is summarized in a downloadable table. The users can access details of individual mutation as shown in Fig. S4. 
There is a 3D viewer at the bottom of the page in which the residues in the input list is colored according to the 
predicted effect (Fig. S5).

Discussion
PZA was discovered in 1948 in an in vivo screen of nicotinamide derivatives in a structure-activity relationship 
study40 and used as anti-tuberculosis drug in 1952 for the first time. Till the 1970’s PZA was used as a second-line 
drug to treat TB, until they discovered the sterilizing activity and reduction in treatment duration in combination 
with isoniazid and rifampicin. There has been a lot of studies conducted since then and with the continued usage 
of the drug to treat TB, there has been an increased incidence of resistance associated with it. Being an impor-
tant first-line drug, accurate and rapid evaluation of PZA susceptibility is crucial for successful management of 
patients with either susceptible or drug-resistant TB. The existing molecular phenotypic tests are considered 
poorly reliable, expensive, and has a long turnaround time. To account for this situation there is an urgent require-
ment to develop a rapid, reliable and affordable molecular PZA DST. As resistance mutations are spread all over 
the length of the PncA protein, it is quite challenging to develop a new method. In this study, we establish a novel 
computational methodology to better understand the structural and functional consequences of drug resistance 
mutations by exploiting the protein’s 3D structure. Using supervised machine learning algorithm, we developed 
an empirical tool to determine novel drug resistance in PncA followed by a database which has information on 
all possible variants of PncA.

The primary focus of our work is on missense non-synonymous mutations as these typically have more subtle 
molecular effects that can be harder to predict, than in-frame and frameshift indel mutations that have a much 
larger deleterious effect on PncA structure and function and are all classed as high-confidence resistant muta-
tions. The structure-based tools implement the concept of graph-based signatures to predict the effect on single 
point mutations for protein stability. To assess changes in conformational flexibility, graph-based signatures were 
integrated with normal mode analysis to predict the impact on the protein structure. Scores for these features 
which were calculated as change in Gibb’s free energy (ΔΔG) provided important molecular information on 
resistant mutations, signifying larger effects on protein folding and dynamics and minimal effect on PZA bind-
ing affinity. Interpreting the results, we observed, resistance mutations were seen to affect protein activity and 
function through destabilization of the protein structure and conformation. It even helped in correlating earlier 
findings where resistant isolates were not associated with a loss of bacterial fitness41 due to the fact that PncA was 
involved in nicotinamide recycling pathway rather than in its synthesis. These structural insights have been used 
to guide clinical decisions for novel PZA mutations23.

Phenotypic DST which is the current “gold standard”, which encompasses methods like Wayne and Bactec 
MGIT 960, suffers from poor reproducibility. Discrepancies among the results lead to considerable doubt over the 
clinical significance of the method. Next-generation sequencing based diagnostics can be an alternative for inno-
vative tools to reduce false detection of PZA resistance cases and fast and accurate detection of drug resistance by 
molecular DST42. In the past couple of years researchers have used different techniques to come up with a better 
and consistent methodology to detect and determine resistance in PZA. Stoffels et al.41 conducted an elaborate 
study on 14-year complete capture of clinical isolates, where he found frequency of spontaneous acquired resist-
ance to be 10−5 bacilli in vitro. Miotto et al. 2014 work generated the minimum dataset of mutations that should 
be included in any molecular test for PZA, paving the way for predicting PZA resistance using new genome-based 
technologies22. This was followed by Farhat et al. 2016 comprehensive web-based dataset43. Though all these 
approaches were a step up from the existing phenotypic DST, they do not provide information on novel variants. 
The advantage with our database is it provides information on all possible variants for PncA. This data provides 
a basis for use as part of any molecular DST, needed for the valid interpretation of data generated by massive 
sequencing approaches.

Interestingly, comparing performance of SUSPECT-PZA across datasets used to train earlier methods, we 
observed that the weakest performance was across variants classified as susceptible. However, many of these 
mutations have been observed in clinically resistant isolates. Our biophysical analysis and SUSPECT-PZA predic-
tions would be consistent with these mutations potentially being misclassified previously.

We also compared our empirical models output to the “revised DST” of Miotto et al.22, where they accounted 
for enzymatic activity and structural analysis to adjust for possible errors in phenotypic DST. There were 178 
missense mutations listed, of which 162 were labelled resistant (R) and 17 were labelled susceptible (S). Our 
model predicted 88.9% (144/162) of the resistant mutations and 58.8% (10/17) of the susceptible mutations accu-
rately. The positive predictive value was 95.4% (95% CI [92.1% to 97.3%]). The primary divergence from the 
Miotto classifications was in predicting susceptible mutations. This is likely due to discrepancies in phenotypic 
and molecular DST results from different laboratory setups16. For example, mutations reported as susceptible in 
the “revised DST” like L159V, F81S, A102V, T135S, T168I and A46V were unanimously reported as resistant in 
other studies24,26–28. Our predictive tool also predicts them to be resistant and hence, proves to be more reliable, 
reproducible, free to use and a fast alternative to the existing gold standard methods.

This study highlights the power of using computational prediction of the structural consequences of variants 
in PncA to identify likely pyrazinamide resistance mutations, a critically important first-line drug in the treat-
ment of tuberculosis. This approach, however, is not limited to pncA and has been developed for application to 
other antimicrobial agents like bedaquiline44, a last line resort to treat multi-drug and extremely drug resistant 
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TB. A major advantage of our tool is that it was built using a very well-balanced dataset. In case of mutations 
reported as both susceptible and resistant in the same or different datasets, we looked for frequency of occurrence 
and clinical information. We have extensively evaluated the method through both cross-validation and inde-
pendent non-redundant blind tests, which provide a measure of a methods applicability and robustness. Across 
all test sets the method performed equally well, providing strong confidence in the approach. As with all machine 

Figure 5.  SUSPECT-PZA webserver Single point mutation prediction result page. The predicted outcome 
of the submitted mutation is displayed along with complimentary information on features used to aid in the 
development of the tool. The interactive 3D viewer allows user to further analyze non-covalent interactions for 
both wild type and mutant residues on the protein. A variety of controllers are provided to customize molecule 
representation.
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learning approaches, the availability of more phenotypic and clinical data will enable the development and vali-
dation of stronger approaches. This will be an iterative approach moving forward. The other aspect to improving 
our predictive model is through the inclusion of new features or parameters. We have shown previously that this 
approach can even capture strain dependent variations in resistant patterns23. While we did not have the data 
available to build into our current model, we next aim to integrate lineage specific information, which will enable 
more refined and personalized predictions. This comprehensive web server can be used in clinical settings as an 
improved diagnostic tool to help realize the power of whole genome sequencing diagnostic approaches.

Methods
Data set.  A list of 610 nonsynonymous single-nucleotide mutations (nsSNVs) of pncA was obtained from the 
GMTV (Genome-wide Mycobacterium tuberculosis Variation) Database Project26, Tuberculosis Drug Resistance 
Mutation Database27, and saturation mutagenesis28. The clinical validation datasets used in the paper were from 
CRyPTIC24 and Miotto et al.25.

Modelling the biophysical consequences of missense mutations.  We have developed a compre-
hensive in silico mutational analysis platform that uses graph-based signatures to represent the 3D structure of a 
protein and quantitatively predict the molecular consequences of point mutations on protein structure, function 
and interactions30,33–36,45. This has been used to characterize and preemptively identify likely resistance mutations 
in drug targets23,37,46–54. Using these tools, we assessed the molecular consequences of each mutation on the struc-
ture of PncA and drug activation.

The experimental crystal structure of holo-wild-type PncA (PDB ID: 3PL1)29 was minimized in Prime, and 
PZA docked into the active site using Glide (Schrödinger Suite). The effects of mutations on PncA folding and sta-
bility were assessed using SDM55, mCSM-Stability33 and DUET34, and their effects on protein flexibility and con-
formational was predicted using normal mode analysis by DynaMut35. The effect of the changes on the binding 
affinity of PZA towards PncA were predicted using mCSM-Lig36,56. These approaches are novel machine-learning 
algorithms. We also included structural information of the wild-type residue, including relative solvent accessi-
bility, residue depth, secondary structure and dihedral angles of the PncA chain ϕ (phi) and ψ (psi). Additionally, 
SNAP231 and PROVEAN32 were used to provide additional evolutionary information. Moreover, the scores calcu-
lated for the various structural and sequence-based features are independent of pH and temperature.

Machine learning.  Here we used the Random Forest binary classifier using the Weka toolkit57 to train our 
predictive models. Random Forest is an ensemble-learning robust classification algorithm, in which multiple 
decision trees are included over a random subset of features and decide the output via majority voting. The model 
was trained using 10-fold cross-validation and performance evaluated by area under the Receiver Operating 
Characteristic (AUROC) curve, precision and accuracy. Further validation of the models was performed using 
a blind-test set of 184 mutations, which were non-redundant at the position-level with mutations in the training 
set. Analysis of the final model revealed a set of structural features that distinguished between susceptible and 
resistant pncA point mutations.

Webserver development.  The server front-end was built using materialize CSS framework version 1.0.0, 
while the backend was built in Python via the Flask framework (version 0.12.2). It is hosted on a Linux server 
running Apache.

Sequencing and DST of clinical isolates.  Genomic DNA was extracted according to the mechanical cell 
disruption and ethanol precipitation method outlined in Votintseva 201558 with slight modifications. Briefly, no 
pre-treatment was used and approximately 3 × 1 µL loops of culture were dispersed in 700 µL TE buffer (Sigma 
Aldrich) as the starting material. The precipitated DNA pellet was only washed once and resuspended into 50 µL EB 
Buffer (Qiagen) at 55 °C for 10 minutes with regular vortexing. Finally, samples were centrifuged 3 min at 13,000 rpm 
and 45 µL of DNA extract was transferred into a clean tube for downstream processing. Each extract was interrogated 
for Mycobacterium tuberculosis viability by inoculating 15 µL of DNA extract into MGIT tube (Becton Dickinson, 
UK) and incubated in the Bactec MGIT 960 system (Becton Dickinson, UK). Unique dual indexed libraries were 
prepared using the Nextera XT DNA sample preparation kit (Illumina). Libraries were sequenced on the Illumina 
NextSeq. 500 with 150-cycle paired end chemistry as described by the manufacturer’s protocols.

Sequences were aligned to H37Rv (NC_0009623.3) and small nucleotide variations (SNV) mutations in pncA 
were identified using LoFreq (http://csb5.github.io/lofreq/). SNVs with a frequency > 0.6 were used to compare the 
genotype of isolates to the phenotype observed using standard laboratory methods for PZA susceptibility testing.
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