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Nanomedicine development currently suffers from a lack of efficient tools to predict pharmacokinetic 
behavior without relying upon testing in large numbers of animals, impacting success rates and 
development costs. This work presents dendPoint, the first in silico model to predict the intravenous 
pharmacokinetics of dendrimers, a commonly explored drug vector, based on physicochemical 
properties. We have manually curated the largest relational database of dendrimer pharmacokinetic 
parameters and their structural/physicochemical properties. This was used to develop a machine 
learning-based model capable of accurately predicting pharmacokinetic parameters, including half-
life, clearance, volume of distribution and dose recovered in the liver and urine. dendPoint successfully 
predicts dendrimer pharmacokinetic properties, achieving correlations of up to r = 0.83 and Q2 up to 
0.68. dendPoint is freely available as a user-friendly web-service and database at http://biosig.unimelb.
edu.au/dendpoint. This platform is ultimately expected to be used to guide dendrimer construct design 
and refinement prior to embarking on more time consuming and expensive in vivo testing.

A lack of appropriate pharmacokinetic behavior has historically been one of the leading causes of drug failure 
in clinical trials1. Advances in controlled release technologies and nanomedicine, however, are increasingly pro-
viding new opportunities to circumvent this shortcoming in rational drug development initiatives and are pro-
viding renewed hope for old drug candidates. Importantly, a wide range of nanosized materials with a variety of 
chemico-biological traits that can be used to alter and drive the pharmaceutical behavior of loaded drugs (including 
colloids, nanoparticles and polymers) have been developed and explored for their potential as relatively biologically 
inert drug carriers. One of the primary indications for which nanomaterials have been explored and have proven 
successful is in promoting the targeted delivery of chemotherapeutic drugs towards solid tumors via the enhanced 
permeation and retention (EPR) effect2. While optimal EPR necessitates the use of nanocarriers that display pro-
longed blood circulation3, a trade off needs to exist between blood exposure (to maximize EPR) and elimination (to 
minimize accumulation of the nanomaterial in the body and off-target toxicity). As a classic example, the PEGylated 
liposomal formulation of doxorubicin (Doxil®/Caelyx®) displays good EPR into solid tumors, but its prolonged 
plasma exposure leads to accumulation in the extremities, causing painful swelling of the hands and feet4. This 
highlights the importance of optimizing the pharmacokinetic behavior of nanomedicines early in development.

Often, however, the preclinical development of nanomedicines involves testing the biopharmaceuti-
cal behavior and safety of a wide range of nanocarriers, alone and in combination with loaded drug, in hun-
dreds of animals prior to advancing the optimized construct(s) into clinical trials. This leads to increased 
research and development time and cost which, ultimately, translates into higher product costs for consumers. 
Furthermore, researchers are seeing an increasing impetus to limit the use of animals in biomedical research5. 
This has been addressed somewhat for small molecule drug candidates by the development of predictive models 
for toxico-pharmacokinetic behavior based on the physicochemical attributes of the drug (approaches such as 
pkCSM6). This enables preliminary in silico assessment of pharmacokinetic properties, guiding refinement of 
the molecule prior to in vivo testing. To date, however, no such predictive models exist for macromolecules and 
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nanomaterials. This is in part due to the wide diversity in available nanostructures that can be employed as drug 
delivery systems, with each displaying distinct in vivo behavior. Even within defined classes of nanomaterials, 
changes to the nanomaterial composition, drug loading, length and number of surface polyethylene glycol (PEG) 
groups, for instance, can have profound and, until recently, seemingly unpredictable effects on biopharmaceutical 
behavior by altering the solution behavior and cell/protein binding properties of the material7. This is especially 
problematic for polymer-based systems (linear and hyperbranched polymers) which are typically much smaller 
(≤20 nm or <500 kDa) than colloids and nanoparticles (typically > 100 nm) and are therefore, more sensitive to 
small changes in composition and physicochemical properties.

In an attempt to address the lack of effective predictive models for the in vivo behavior of nanomaterials, Riviere 
and colleagues8 published the first approach to predict the adsorption of biomolecules onto a nanoparticle surface 
in Nature in 2010. The approach involved comparing the surface adsorption of a set of small molecule probes and 
generating a ‘surface adsorption index’ to predict the binding of biomolecules (the ‘protein corona’) which is known 
to play a significant role in dictating the biodistribution behavior of nanoparticles9. Subsequent to this, a number 
of investigators have used physiologically based pharmacokinetic models (PBPK) to simulate the mass-time bio-
distribution profiles for a range of metal nanoparticles10–15 as well as some polymeric nanoparticles16–18. In most 
cases, these models were developed based on limited experimental data sets to predict the biodistribution and 
elimination kinetics of nanoparticles with a fairly narrow set of physicochemical variants (such as size and charge). 
The intention behind these models was to aid researchers in their selection of optimal particle properties for fur-
ther development or in risk assessment analysis. The PBPK approach however, is not appropriate for predicting 
the pharmacokinetic behavior of more complex nanostructures such as liposomes and polymers that may be com-
prised of a variety of different scaffold components (such as different lipids or monomers). These models are also 
not easily adaptable and available for use by researchers with limited or no knowledge of biometric analysis.

Dendrimers are well defined hyperbranched polymeric systems that can range in size from 1–20 nm 
in diameter19 (Fig. 1), which can provide several pharmacokinetic advantages over much larger colloids and 
nanoparticles20–22. Drugs can be loaded either peripherally via internally triggered chemical linkers, or can be 
non-covalently loaded into the hydrophobic scaffold. Although the clinical advancement of nanomedicines has 
been a slow process, Starpharma’s topical microbicidal gel (Vivagel®) has recently gained regulatory approval in 
Australia and Europe for the treatment of bacterial vaginosis and a dendrimer-based formulation of docetaxel 
(DEP™-docetaxel) recently successfully completed phase I clinical trials for the treatment of advanced solid tum-
ors. The establishment of an in silico model capable of accurately predicting dendrimer pharmacokinetics is there-
fore timely and of increasing relevance.

Here, we describe dendPoint, the first in silico and widely available model to predict the intravenous phar-
macokinetics of complex polymeric nanomaterials based on scaffold structure and physicochemical properties. 
We have manually curated a detailed relational database describing dendrimer biopharmaceutical behavior with 
various structural and chemical characteristics. This was used to develop a model to predict key pharmacokinetic 
parameters for dendrimers. dendPoint is available via a user-friendly freely available web-based system, accessible 
at http://biosig.unimelb.edu.au/dendpoint. This computational platform encompasses a relational database of 
pharmacokinetic properties of different dendrimer scaffolds together with a web-service capable of predicting 
and comparing dendrimer properties, including Half-life, Volume of Distribution, Clearance and Dose in Liver 
and Urine, allows users to rapidly and easily browse literature-derived properties as well as predict, compare and 
visualize dendrimer pharmacokinetic properties.

Results
Database curation. In total, the pharmacokinetic parameters of 69 distinct dendrimers, from over 600 
papers, were manually curated into the dendPoint database (Fig. 2, Table S1). Many structural and physico-
chemical properties can dictate the pharmacokinetic behavior of dendrimers, including scaffold composition, 
dendrimer size, degree of surface PEGylation, PEG chain length, surface functionality (including charge and the 

Figure 1. Basic structure of a dendrimer showing sequential layering of monomeric units around a central 
core (G0). A dendrimer may be composed of any monomeric unit provided it has at least 2 functional groups 
available to build additional generations. Surface functional groups depicted as circles.
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presence of hydrophobic drugs) and structural flexibility3,23,24. The impact of each of these parameters on intra-
venous pharmacokinetics has been summarized previously3 and they were therefore included in the database as 
summarized in Table S1 (Supporting Information).

The susceptibility of the dendrimer scaffold to in vivo biodegradation may also impact upon the rate 
of dendrimer elimination from the body, but surface functionalization with non-biologic groups (such as 
non-natural amino acids and PEG) slows scaffold breakdown3. To this end, with the exception of two unmodified 
amine-terminated polylysine dendrimers, none of the dendrimers in Table S1 were reported in their respective 
publications to have shown significant in vivo biodegradation that was expected to have driven the reported 
intravenous pharmacokinetics. Biodegradability of the scaffold was, therefore, not included as a parameter that 
defined the ultimate pharmacokinetics, although the composition of the scaffold was.

Pharmacokinetic data was therefore obtained for dendrimers based on non-biodegradable triazine and poly-
amidoamine (PAMAM) scaffolds, as well as biodegradable polyester and polylysine scaffolds. While the effective 
‘size’ of polymeric nanomaterials may be reported in terms of hydrodynamic radius or molecular weight, few of 
the papers reported in Table S1 provided this information on radius and therefore, this parameter could not be 
included in the database. Regardless, it has previously been suggested that the terminal Half-life of dendrimers 
correlates more significantly with molecular weight than with radius3. In addition, three quarters of the dendrim-
ers included in dendPoint presented some degree of surface PEGylation. This is likely a result of the fact that since 
the molecular weight of the dendrimer scaffold is limited by poor conjugation efficiency and greater polydisper-
sity for generations higher than approximately 5–6, surface PEGylation is commonly required to increase size 
and prolong plasma exposure3. PEGylation is also often employed either alone or in combination with acetylation 
(Ac) to block surface reactive sites and prevent binding to cells and tissues.

Pharmacokinetic parameters that were included in the database include terminal Half-life and clearance, since 
these ultimately describe the plasma exposure of the dendrimers after intravenous delivery. From these parame-
ters, volume of distribution can be calculated from the equation Cl = Vd*(0.693/t1/2), where Cl denotes Clearance, 
Vd denotes terminal Volume of Distribution and t1/2 denotes Half-life. The percentage of the dose excreted via 
the urine and percentage dose recovered in liver were also included since these represent the major pathways by 
which dendrimers are cleared from plasma (i.e., via elimination in urine and biodistribution towards the liver). 
For liver uptake and urinary excretion, a threshold of <20% was used in classification tasks to define dendrimers 
with limited liver uptake or urinary excretion respectively. With the exception of several polyester dendrimers, 
significant quantities of dendrimer have not been detected in the feces, suggesting this is not a major route of 
dendrimer elimination from the body. Liver biodistribution typically results from recognition of the polymeric 
nanomaterial by macrophages of reticuloendothelial organs (which also include the spleen, lymph nodes and 
lungs) and is normally the organ that contains the highest proportion of an injected dendrimer dose after one 
week3. Distribution towards the liver may result from initial plasma protein binding (opsonisation) of the den-
drimer, electrostatic recognition of anionic charges on the dendrimer surface by macrophages or non-specific 
accumulation of long circulating constructs over time23–25.

Analysis of dendrimer properties. The distribution of all four experimental pharmacokinetic properties 
for all molecules in the database are shown in Fig. S1. This highlights the relatively broad distribution of Half-life, 
Clearance and percentage dose recovered in the urine across the range of dendrimer constructs that have been 
characterized. There was little accumulation of dendrimer dose (median of 7%) in the liver for the majority of 
constructs in the database (with 80% of dendrimer having a %Dose in Liver below 20%).

Looking closer at the distribution of Half-life and Clearance divided by Scaffold and Flexibility revealed 
some general trends (Fig. 3A–D). Notably, as structural flexibility increased, Half-life decreased and Clearance 
increased. When assessing the effects of Surface Charge on the pharmacokinetic properties (Fig. 3E,F) a similar 
behavior was also observed. While Clearance increased as Surface charge move further from neutral (increasing 
charges, either negative or positive), Half-life decreased. The polylysine-based scaffold presented the largest varia-
bility in pharmacokinetic properties, in part due to the large number of diverse constructs that have been system-
atically analyzed to date. Triazine-based dendrimers were associated with lower Clearance and longer Half-lives.

Figure 2. dendPoint workflow. Dendrimer pharmacokinetics were collected from over 600 papers via literature 
search. Construct properties, information on surface functional groups as well as pharmacokinetic behaviour of 
69 different dendrimers were collected and included in a relational database. This was used as evidence to train 
and test predicted methods via supervised learning. A user-friendly web interface was created for both database 
and predictive method.
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PEGylation level and construct molecular weight correlated well with all pharmacokinetic properties. Half-life 
significantly and positively correlated with both construct molecular weight (r = 0.70) and total PEG molecular 
weight (r = 0.61) (Fig. 4A,B). An even stronger correlation, although negative, between these properties and 
Clearance was also observed (r = −0.70 for construct molecular weight and r = −0.65 for total PEG molecular 
weight) (Fig. 4C,D).

prediction of dendrimer pharmacokinetic properties. Our curated database was then used to train 
and test predictive pharmacokinetic models. The approach we used was based on our well validated CSM meth-
odology26. This is based on the concept of structural signatures, which are an alternative way of extracting relevant 
patterns from molecular entities, originally modeled as graphs, which in turn are provided as evidence to super-
vised learning methods. These structural signatures are a powerful and scalable way to represent geometry and 
physicochemical properties, and have been applied to accurately predict small molecule pharmacokinetics6,27, 
to characterize small molecule-protein interactions28 and the effects of mutations on protein structure29–37. As 
shown in Fig. 1, we represent each dendrimer as a graph where the nodes are the branch points and the edges are 
the connections. Distance patterns between nodes are then summarised as cumulative distribution functions, 
which are then used as evidence to train machine learning methods. Complementary information also integrated 
into the signatures included the physicochemical properties in the curated database. This information, together 
with the experimentally measured pharmacokinetic properties, was then used to train and test predictive models.

The dendPoint platform for predicting dendrimer pharmacokinetic properties was able to accurately pre-
dict Half-life with a Pearson’s correlation coefficient of r = 0.82 and Q2 = 0.66 on jackknife validation (Table 1, 
Fig. 5A). This correlation increases to r = 0.91 when assessing the performance of the method after removing 10% 
of outliers. A similar performance, however with smaller dispersion, was observed for the Clearance predictor. 
A correlation of r = 0.83 and Q2 = 0.68 was obtained on cross validation, also increasing to r = 0.89 after 10% 
outlier removal (Table 1, Fig. 5B). To further evaluate the predictive models, we assessed their performance on 
a bootstrap validation using a 90%/10% split over 100 repetitions. The performance of all models was consistent 
with that achieved over jackknife validation as shown in Table 1.

For both Half-life and Clearance predictors, the outlier sets were composed, on average, of smaller constructs 
(Construct molecular weight of Half-life outliers = 33.8 kDa, and Clearance outliers = 17.2 kDa, compared to 
the average construct molecular weight across the dataset of 47.9 kDa), with less surface PEGs (Half-life outli-
ers = 8.5, Clearance outliers = 6.4 compared to 16.2 average surface PEGs across the dataset), accounting for a 

Figure 3. Distribution of Half-life and Clearance properties based on Scaffold, Structure Flexibility and 
Surface Charge across the database. The left-hand side graphs depict (from top to bottom), as violin plots, the 
distribution of Half-life per Scaffold, Structure Flexibility and Surface Charge, while the right-hand side graphs 
show how Clearance varies based on these properties.
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smaller total PEG molecular weight (Half-life outliers = 15.9 kDa, Clearance outliers = 11.5 kDa compared to the 
overall dataset that had an average total PEG molecular weight of 30.3 kDa).

Building a predictor for %Dose in liver presented a great challenge given the very skewed distribution of 
experimental values, as seen in Fig. S1C. Despite the skewed distribution of experimental data, dendPoint was 
able to achieve a correlation of r = 0.59, which increased significantly once the top 10% of outliers were removed, 
reaching a correlation of r = 0.73 on 90% of the data (Table 1, Fig. S2A). Predictive performance for %Dose Liver 
did deteriorate slightly for larger predicted values due to the skewed nature of the data distribution.

The predictor for %Dose in urine, achieved a higher correlation in comparison with % Dose in Liver, with a 
correlation of r = 0.73, increasing to r = 0.87 after 10% outlier removal (Table 1, Fig. S2B). This is largely due to the 
data of %Dose recovered in the urine within the dendPoint database that had a more even distribution of exper-
imental values. Bootstrap validation of both %Dose in liver and %Dose in urine showed consistent performance 
to jackknife (Table 1), further improving confidence in both models predictive capabilities.

Alternatively, we were also able to build predictors to assess whether a dendrimer construct would be cleared 
by the liver and/or excreted in urine. Constructs were defined as having limited liver uptake or urinary excretion 
using a 20% cutoff for dose in liver and urine, respectively (see details in Materials and Methods). Figure S3 of 

Figure 4. Distribution of Half-life and Clearance properties based on Construct and Total PEG molecular 
weight. The left-hand side graphs depict, as scatter plots, the distribution of Half-life (top) and Clearance 
(bottom) based on Construct molecular weight, while the right-hand side graphs show how these properties 
vary based on Total PEG molecular weight. Pearson’s linear correlations between these properties are also 
depicted.

Data set

Jackknife Cross Validation Bootstrap

Pearson’s RMSE Pearson’s RMSE

Half-life 0.82 0.52 0.76 0.54

Clearance 0.83 0.57 0.82 0.54

%Dose Liver 0.59 15.7 0.57 13.6

%Dose Urine 0.73 15.5 0.70 14.2

Table 1. dendPoint evaluation on jackknife cross validation, and 100 times bootstrap validation on a 90%/10% 
split with 100 repetitions.
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Supplementary Materials shows the ROC curves obtained for both predictors, which achieved AUCs of 0.87 and 
0.86 for urinary excretion and liver uptake, respectively. The predictors were successful in predicting the differ-
ences between constructs that had limited liver uptake/limited urinary excretion compared to those that were 
cleared by the liver or excreted in urine, achieving an accuracy of up to 80%.

The attributes that contributed most to the performance of each predictor were evaluated by Principal 
Component Analysis (PCA). Both construct molecular weight and total PEG molecular weight were consistently 
well ranked for all four predictors. This was expected given these attributes correlated well with the pharmacoki-
netic parameters by themselves. PCA showed that these attributes contributed largely to the variability of the 
Half-life data set, together with Generation and Structure Flexibility (Fig. S4A). These were consistent with the 
other data sets. Drug conjugation, both in terms of the type and number of surface drugs, played an important 
role in prediction performance, despite a clear correlation not being noticed during analysis of individual fea-
tures. A histogram of the percentage of explained variance per feature (Fig. S4B) shows that the majority of the 
features are necessary to explain variability (a linear drop on explained variance, instead of a usual logarithmic 
drop), suggesting that the selected group of variables are diverse and complementary.

Discussion
In summary, here we describe dendPoint, the first relational database and predictive method that associates 
physicochemical properties of a complex hyperbranched polymeric structure (notably dendrimers) with exper-
imentally measured intravenous pharmacokinetic data. This provides the first opportunity to begin to system-
atically analyze the relationship between dendrimer structures and their biological behaviors, in the attempt to 
guide construct design and development. It has been carefully curated from the literature and will be updated 
regularly. Although, in practice, dendrimers may ultimately be delivered via non-intravenous routes (such as 
subcutaneously or via inhalation) which will require the need for additional base physicochemical properties for 
optimal pharmacokinetic behavior, the intravenous route is currently standard practice for the systemic delivery 
of nanomedicines.

This database reveals some general rules of dendrimer design, where construct molecular weight, flexibility 
and PEGylation can all be used to tunably adjust the plasma exposure of a dendrimer. To begin with, whilst 
half-life is used as the most common parameter to describe the plasma exposure of a nanomaterial, clearance is a 
more appropriate parameter since it takes into account urea under the whole plasma concentration-time profile, 
rather than simply the elimination kinetics alone. With this in mind, plasma exposure can be increased (or rather, 
clearance decreased) via restricting urinary excretion, extravasation and uptake into cells and tissues by employ-
ing the following basic rules: (1) increased degree of surface conjugation or molecular weight of hydrophilic, bio-
compatible and poorly-biodegradable polymers such as PEG (polymerisation), (2) increase construct molecular 
weight (size), (3) reduce surface charge (charge), (4) reduce structural flexibility (flexibility). Based on the availa-
ble data and our model, drug conjugation to the surface has a negligible effect on intravenous pharmacokinetics.

In small molecule drug design, the development and application of generalized rules and these tools have been 
widely used to improve compound quality and success rates. In addition to providing the first curated database of 
dendrimers to facilitate the analysis of nanoparticles, we demonstrate that it can be used as the basis to train novel 
predictive pharmacokinetic models.

We have implemented a user-friendly web server that will enable researchers to search, predict and visual-
ize the pharmacokinetic properties for their molecules of interest (http://biosig.unimelb.edu.au/dendpoint). In 
addition, we have implemented a comparison feature that enables users to rapidly compare the pharmacokinetic 
profiles of two molecules, allowing systematic evaluation of pharmacokinetic profiles as various physicochemical 
properties of the dendrimer are modified. Considering the sensitive nature of many projects, the web server does 
not retain any information submitted to it. This will hopefully facilitate the development and optimization of den-
drimers for specific biological roles, and provide a foundation for the evaluation of nanoparticles more broadly.

Figure 5. Predicting dendrimer pharmacokinetcs with dendPoint. The graphs depict the correlation between 
experimental and predicted properties on jackknife validation. A correlation of r = 0.82 was obtained when 
assessing Half-life, increasing to r = 0.91 when 10% outliers (shown in red) were removed. While predicting 
Clearance, dendPoint achieves a correlation of up to r = 0.89 on 90% of the data.
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Methods
Collation of published pharmacokinetic data. Published work describing the intravenous pharma-
cokinetics of dendrimers were identified by undertaking PubMed searches of the terms ‘dendrimer and phar-
macokinetics’ or ‘dendrimer and biodistribution’. Only papers that described - or provided enough information 
to extrapolate – composition of the dendrimer scaffold and surface, molecular weight, terminal plasma half-life 
(t1/2) plus % dose excreted in urine and/or % dose recovered in liver at termination were included in the data-
base. Papers describing the pharmacokinetics of loaded drug rather than the dendrimer scaffold were excluded, 
since following the loaded drug is a poor predictor of the biopharmaceutical behavior of the dendrimer itself. 
Supramolecular structures (such as micelles) that were comprised of dendritic polymers and hyperbranched 
polymers that were based on dendritic cores were also excluded. Dendrimers conjugated with distinct targeting 
moieties (such as tumor targeting ligands) were also not included since this is expected to change the pharma-
cokinetics of the base construct.

Using this criteria, 20 papers collectively describing the pharmacokinetics of 69 distinct dendrimer struc-
tures were identified that provided sufficient information to compile the database. Plasma clearance (Cl) was 
included in the database where possible and was either taken directly from published papers or was extrapolated 
from available data by dividing dose by area under the plasma concentration versus time curve. Where pharma-
cokinetic parameters needed to be extrapolated from graphical data, the data recovery program GetData Graph 
Digitizer v2.26 (GetData Pty Ltd, NSW, Australia) was employed. Where area under the plasma concentration 
time curve needed to be calculated to determine Cl, this was calculated manually using the trapezoid rule and 
extrapolated to infinity by dividing the last plasma concentration detected by the elimination rate constant (k).

Each of the papers used described dendrimer pharmacokinetics in rodent models (notably mice and rats), 
and as such, the body weight of the animal models used can vary by up to 20 fold. While this has no bearing on 
t½ or proportion of injected dose recovered in liver or urine, Cl is a function of distribution volume (Vd) and 
therefore body weight. Cl was therefore normalized to ml/h per kg body weight by dividing Cl (in ml/h) by the 
average reported body weight of animals used in the study. Where mean body weight or body weight ranges 
were not reported, mean body weights for the animals described and at the reported ages were extrapolated from 
growth curves published online by several breeders (Harlan, Charles River Laboratories, Taconic and the Animal 
Resources Centre).

The complete set of data used to compile the pharmacokinetic database is tabulated in Table S1 (see Supporting 
Information).

Method training and evaluation. Different supervised learning algorithms for regression available on the 
Weka ToolKit (version 3.8.2)38 were used to train models for the different pharmacokinetic properties collected 
and store on the database. The best performing models, based on the evaluation metrics below, were obtained 
using Random Forest39 (default settings, 100 trees) for both classification and regression tasks.

Regression models were initially evaluated using jackknife validation procedure and the best performing 
models were selected based on the Pearson’s Correlation Coefficient and Root Mean Square Error (RMSE; 

= ∑ =
−RMSE i

N Predicted Actual
N1

( )i i
2

). The Pearson’s Correlation Coefficient quantifies the linear dependency 
between two variables (e.g., experimental vs. predicted pharmacokinetic properties) as the covariance of the 
variables divided by the product of their standard deviations: rA,B = cov(A,B)/sd(A)∗sd(B). Correlations vary from 
[−1, 1], where 1 and −1 denote a perfect positive and negative linear correlation, respectively, while a correlation 
value of 0 denote no linear correlation. Classification models were also evaluated using jackknife validation and 
best performing ones selected based on Area Under ROC curve (AUC) and accuracy. AUC varies from [0, 1] with 
a random binary classifier achieving an AUC = 0.5 and a perfect classifier achieving an AUC = 1. Regression and 
classification models were further evaluated using bootstrap validation on a 90%/10% split of the data, with 100 
repetitions. Outliers are considered the points furthest away from the line of best fit, and were removed only for 
analysis purposes. Accuracy is denoted by the proportion of correctly classified instances. PCA was performed 
using R programming language to assess each feature’s contribution to explain variability.

Database and web interface. dendPoint’s database and predictive models have been implemented as a 
user-friendly web-server freely available at http://biosig.unimelb.edu.au/dendpoint. The dendrimer pharmacoki-
netics information collected from literature search was consolidated as a MySQL relational database (version 
5.5.35). Front-end development was created using the Bootstrap framework (version 3.3.7). The server back-end 
runs on a Linux server and was implemented in Python using the Flask frame-work (version 0.12.3). Dendrimer 
depiction was developed with the JavaScript library D3.js (version 4.2.6) and Plasma Concentration plot was 
created with the HighCharts charting tool (version 5.0.0).

Users have the option to browse the database via the web interface (Fig. S5, Supporting Information), search/
filter specific information as well as show/hide construct properties, surface group properties and phamacoki-
netics details.

Job submission can be easily done by informing construct properties and surface group compositions via an 
intuitive submission form (Fig. S6). Generation and Construct molecular weight are required fields. After pre-
diction a results page is exhibited (Fig. S7), showing the pharmacokinetics properties, dendrimer depiction and 
plasma concentration curve, giving the user the option to wither modify the job for resubmission or compare the 
predicted properties with another dendrimer construct (Fig. S8). See Supporting Information for supplementary 
figures.
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