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Rifampin resistance in leprosy may remain undetected due to the lack of rapid and effective diagnostic
tools. A quick and reliable method is essential to determine the impacts of emerging detrimental muta-
tions in the drug targets. The functional consequences of missense mutations in the b-subunit of RNA
polymerase (RNAP) in Mycobacterium leprae (M. leprae) contribute to phenotypic resistance to rifampin
in leprosy. Here, we report in-silico saturation mutagenesis of all residues in the b-subunit of RNAP to
all other 19 amino acid types (generating 21,394 mutations for 1126 residues) and predict their impacts
on overall thermodynamic stability, on interactions at subunit interfaces, and on b-subunit-RNA and
rifampin affinities (only for the rifampin binding site) using state-of-the-art structure, sequence and nor-
mal mode analysis-based methods. Mutations in the conserved residues that line the active-site cleft
show largely destabilizing effects, resulting in increased relative solvent accessibility and a concomitant
decrease in residue-depth (the extent to which a residue is buried in the protein structure space) of the
mutant residues. The mutations at residue positions S437, G459, H451, P489, K884 and H1035 are iden-
tified as extremely detrimental as they induce highly destabilizing effects on the overall protein stability,
and nucleic acid and rifampin affinities. Destabilizing effects were predicted for all the clinically/exper-
imentally identified rifampin-resistant mutations in M. leprae indicating that this model can be used as a
surveillance tool to monitor emerging detrimental mutations that destabilise RNAP-rifampin interactions
and confer rifampin resistance in leprosy.
Author summary: The emergence of primary and secondary drug resistance to rifampin in leprosy is a
growing concern and poses a threat to the leprosy control and elimination measures globally. In the
absence of an effective in-vitro system to detect and monitor phenotypic resistance to rifampin in leprosy,
diagnosis mainly relies on the presence of mutations in drug resistance determining regions of the rpoB
gene that encodes the b-subunit of RNAP in M. leprae. Few labs in the world perform mouse food pad
propagation of M. leprae in the presence of drugs (rifampin) to determine growth patterns and confirm
resistance, however the duration of these methods lasts from 8 to 12 months making them impractical
for diagnosis. Understanding molecular mechanisms of drug resistance is vital to associating mutations
to clinically detected drug resistance in leprosy. Here we propose an in-silico saturation mutagenesis
approach to comprehensively elucidate the structural implications of any mutations that exist or that
can arise in the b-subunit of RNAP in M. leprae. Most of the predicted mutations may not occur in M.
leprae due to fitness costs but the information thus generated by this approach help decipher the impacts
of mutations across the structure and conversely enable identification of stable regions in the protein that
are least impacted by mutations (mutation coolspots) which can be a potential choice for small molecule
binding and structure guided drug discovery.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Nonsynonymous mutations in genes that encode drug targets in
mycobacteria can induce structural and consequent functional
changes leading to antimicrobial resistance, the burden of which
is rapidly increasing and is a global health concern. Diagnosis of
~600,000 new cases of rifampin-resistant tuberculosis in 2018 sug-
gest that it poses a risk for the concomitant increase in undiag-
nosed rifampin-resistant leprosy, worldwide [1]. Mycobacterium
leprae (M. leprae), the causative bacilli for leprosy, is phylogeneti-
cally closest to Mycobacterium tuberculosis [2] and developed resis-
tance to rifampin before the introduction of World Health
Organization (WHO) recommended multi-drug therapy (MDT) in
the year 1984. Despite the long duration of chemotherapy with
MDT (six months in paucibacillary to 12 months in multibacillary
disease), rifampin-resistant case numbers are less and represent
only 3-5% of total clinically diagnosed relapsed leprosy cases as
reported by WHO in 2017 [3]. One of the possible reasons for the
low numbers of drug-resistant leprosy cases globally is the lack
of quick, effective and reliable in-vitro diagnostic test for confirm-
ing phenotypic resistance. Current methods rely on identifying
mutations in the rifampin resistance determining region (RRDR)
of the rpoB gene through gene sequencing and/or by testing growth
patterns of M. leprae in response to individual drugs in the MDT in
an in-vivo mouse footpad model; however, the later technique is
both time and labour intensive.

While mutations within the b-subunit of RNAP contribute to
clinical resistance to rifampin, the associated structural changes
can complicate the transcription process in bacteria by modulating
various physiological processes [4], the knowledge of which is
essential for novel drug discovery or alternative therapies to treat
rifampin resistant strains ofM. leprae. In the absence of an artificial
culture system to propagate and study mechanisms of resistance, it
is exceptionally challenging to define an experimental phenotype
for rifampin resistance in leprosy. M. smegmatis as a surrogate host
with cloned M. leprae rpoB gene has proved a dependable model to
study phenotypic effects; however, this technique is limited to bio-
safety level-2 laboratories that have facilities for gene cloning and
sequencing, and cannot be translated to a regular diagnostic set-
ting in leprosy endemic countries [5]. A plausible association
between mutations in drug targets and phenotypic resistance out-
comes could be established if minimum inhibitory concentrations
(MICs) of the drugs are known for the mutant strains. While MICs
can be estimated in cultivable species like M. tuberculosis and M.
smegmatis, obtaining growth information from in vivo propagation
for a slow growing and obligate pathogen likeM. leprae is challeng-
ing and needs time and resources. Alternatively, in-silico methods
that predict structural implications of mutations can be useful in
understanding mechanisms of resistance and help prioritise muta-
tions that require experimental validation in leprosy, owing to the
absence of a tool for quantitative estimation of phenotypic resis-
tance [6].

Mutations contribute to disruption of protein–ligand and
protein-nucleic acid interactions resulting in drug resistance in
mycobacterial diseases [7,8]. Changes in affinity between the drug
target protein and the ligand can result from both orthosteric and
allosteric mechanisms leading to various resistance phenotypes
[4]. The b-subunit of RNAP in M. leprae is encoded by the rpoB gene
(ML1891) whose product is 1178 amino acids in length. The RRDR
is located between the residue positions 410 and 480. Approxi-
mately 40 mutations have been reported in the rpoB gene of
M. leprae that induce clinical resistance to rifampin in leprosy
[9–11]; however, in tuberculosis, nearly 100 mutations have been
reported in the same gene that shares 96% gene sequence identity
with that of M. leprae [12]. As the burden of rifampin resistance is
very high in M. tuberculosis with known and new mutations being
reported from different studies [13–17], it is important to monitor
the emergence of new rifampin-resistant mutations in M. leprae. A
comprehensive understanding of the effect of any mutation on the
structure of RNAP is vital in the context of monitoring emerging
rifampin resistance and its implications on controlling global
leprosy incidence.

In order to decipher the effect of systematic mutations on the
stability of the protein structure, protein sub-unit interfaces,
nucleic acid and ligand interactions, we performed in-silico satura-
tion mutagenesis (mutating every residue to all the other 19 resi-
dues) and predicted the change in stability of the b-subunit and
affinity between b-subunit andrest of the subunits in the complex,
b-subunit-rifampin and b-subunit-RNA interactions. Additionally,
we also assessed the impacts of mutations on the secondary struc-
tures of the polypeptide chains, relative sidechain solvent accessi-
bility, residue-depth and residue-occluded packing density [18].
Residue-level evolutionary conservation scores were determined
and compared with the predicted destabilizing effects. Extremely
detrimental mutations (that destabilize b-subunit of RNAP and
affinity between b-subunit -rest of the subunits in the complex,
b-subunit -rifampin and b-subunit-RNA interactions) were
selected and analysed for changes in their interatomic interactions
that might explain the reasons for the predicted destabilizing
effects. To explore further, the vibrational entropy and enthalpy
changes of the protein in flexible conformations, we employed an
empirical force field-based method – FoldX [19], a course-grained
normal mode analysis (NMA) based elastic network contact model
– ENCoM [20] and a consensus predictor that integrates normal
mode approaches with graph-based distance matrix in the mutat-
ing residue environment– DynaMut [21]. Finally, fragment hot-
spots [22] were mapped on the structures to provide information
on potential druggable sites whose stability is predicted to be least
likely affected by mutations (no mutations in these regions were
identified in leprosy). We termed these sites as ‘‘Mutation cool-
spots” which can be explored for novel/alternative small molecule
binding and structure-guided drug discovery to treat rifampin-
resistant leprosy.
2. Materials & Methods

2.1. Design:

The key stages in the methodology involve comparative protein
3D modelling using known crystal structures of homologues as
templates, quality assessment of the built models, generating
mutation lists from the model and sequential submission of the
lists and the model to stability change prediction servers for
sequence, structure and vibrational entropic terms (Fig. 1A).
2.2. Comparative modelling, quality assessment and model
refinement:

A model for RNAP holoenzyme of M. leprae was built using
Modeller 9.21 [23] with templates from M. tuberculosis (PDB
Id:5UH5 (96% identity, 3.74 Å resolution) containing RNAP, nucleic
acid scaffold with DNA and three nucleotides of RNA complemen-
tary to the template DNA strand, and PDB Id: 5UHC (96% identity,
3.79 Å resolution) containing all the elements similar to 5UH5 and
rifampin) as described earlier by us [4]. The quality of the gener-
ated model was assessed using Molprobity [24] and atomic clashes
were removed by minimizing the energy of the model by 100 steps
using Steepest Decent (step size = 0.02 Å) and by 10 steps
(step size = 0.02 Å) using conjugate gradient methods. Energy
minimizations were performed using UCSF Chimera [25]. The
mutant models were generated using a script from Modeller 9.21



Fig. 1. [A] Methodology and study design. [B] A lollipop plot with stability predictions for mutations reported in the literature and are known to confer rifampin resistance in
Leprosy.
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(mutate_model.py) and sidechains of the mutants were optimized
using ANDANTE [26], a program that uses v angle conservation cri-
teria to optimize the sidechain rotamers. Multiple models were
generated initially to test the variation in the modelling process.
Structural similarity among the models was tested using root mean
square deviation (RMSD) and TM-Align scores [27]. (Supplemen-
tary Figs. 4–6, and Supplementary Table 3).

2.3. Saturated Mutagenesis:

A systematic list of 21,394 mutations was generated for
residues starting from P28 and ending at E1153 positions in the
b-subunit (the modelled region). This list was programmatically
submitted to a set of servers as stated in Table 1 below:

2.4. Residue conservation:

Conservation scores for each residue in the wild-type model
was estimated using CONSURF – a server that uses evolutionary
patterns of amino acids/nucleic acids from the multiple sequence
alignment and develops a probabilistic framework to calculate
evolutionary rates for each residue in the sequence.

2.5. Effects of mutations on protein stability and interactions:

The effect of mutations on thermodynamic stability of the b-
subunit of RNAP was analyzed using mCSM, SDM and FoldX4. For
SDM, mutant models were generated using ANDANTE. The effect
of mutations on RNA affinity is assessed using mCSM-NA2 on
mutant models with nucleic acid scaffold. The holoenzyme com-
plex of RNAP consists of five subunits and the effects of mutations
on the protein–protein interfaces (between b and all the other
Table 1
List of servers used in the computational analysis:

Si
No:

Name of
web server

Function Referenc

1 mCSM Predict protein stability changes due to mutations. [28]
2 SDM Predict protein stability changes due to mutations. [18]
3 mCSM-PPI Predict stability of protein–protein interfaces due to

mutations.
[28]

4 mCSM-NA2 Predict stability of protein-nucleic acid interactions
due to mutations

[29]

5 mCSM-lig Stability of protein–ligand interactions due to
mutations

[30]

6 FoldX4 Predict protein stability changes due to mutations. [19]
7 MAESTRO Predict protein stability changes due to mutations. [31]
8 CUPSAT Predict protein stability changes due to mutations. [32]
9 Imutant

2.0-Struc
Predict protein stability changes due to mutations. [33]

10 Imutant
2.0 -Seq

Predict protein stability changes due to mutations
using sequence information.

[33]

11 PROVEAN Predict protein stability changes due to mutations
using sequence information.

[34]

12 CONSURF To calculate evolutionary conservation score of each
residue in the protein.

[35]

13 ENCoM Conformational Changes in protein due to mutations. [20]
14 DynaMut Conformational Changes in protein due to mutations. [21]
15 Arpeggio Map interatomic interactions between wildtype and

mutant amino acids and the residue environment.
[36]

16 Intermezzo Map interatomic interactions between wildtype and
mutant amino acids and the residue environment.

Bernard
Montan
unpubli

17 ANDANTE Works along with Modeller to generate mutant
models from wildtype model files.

[26]

18 Fragment
Hotspot
Maps

Maps regions on the surface of the protein that has
high propensity for small molecule binding.

[22]
sub-units in RNAP complex) were assessed using mCSM-ppi.
Rifampin binds to the b-subunit of RNAP and we analyzed the
effects of mutations on the protein–ligand affinity using mCSM-
lig. Only residues that are within 10 Å of interatomic distance to
rifampin were analyzed by mCSM-lig.

The stability changes were further compared with predictions
from other sequence- (PROVEAN, I-Mutant 2.0 (Sequence) and
structure-based (MAESTRO, CUPSAT, I-Mutant 2.0 (Structure))
computational tools in order to estimate the reliability of the
predictions.
2.6. Changes in vibrational entropy and normal mode analysis:

In order to determine the effects of the mutations in flexible
conformations of the protein, we used FoldX4, an empirical force
field approach that calculates free energy changes between native
and mutant forms of the protein, and an elastic network contact
model (ENCoM), which is a coarse grain NMA method that consid-
ers the nature of the amino-acids and aids in calculating vibra-
tional entropy changes upon mutations. We also used DynaMut,
a consensus predictor of protein stability based on the vibrational
entropy changes predicted by ENCoM and the stability changes
predicted by graph-based signatures that are used in mCSM
program.
2.7. Conformational changes:

Conformational changes and their impacts on biophysical prop-
erties of the proteins were estimated using SDM. The interatomic
distances between each residue and the interface with other sub-
units in the RNAP holoenzyme, rifampin and nucleic acids in the
structure were measured and included in the analysis. Secondary
e Submission parameters

Model PDB file, mutation and chain id.
Model PDB file, mutation and chain id.
Model PDB file, mutation and chain id.

Model PDB file, mutation, chain id and nucleic acid type.

Model PDB file, mutation, chain id, three letter code of the
ligand and ligand affinity in wild type structure in nM
concentration.
Model PDB file, list of mutations and chain ids.
Model PDB file, list of mutations and chain ids.
Model PDB file, list of mutations and chain ids.
Model PDB file, list of mutations and chain ids.

RNAP sequence file in fasta format, list of mutations and
chain ids.
RNAP sequence file in fasta format, list of mutations and
chain ids.
Model PDB file

Model PDB file, list of mutations and chain ids.
Model PDB file, list of mutations and chain ids.
Model PDB file and the residue selection in standard format.

o Ochoa
o & Blundell TL
shed

Model PDB file and the residue selection in standard format.

Model PDB file, mutation and chain id

Model PDB file.
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structure switches in mutants, changes in relative solvent accessi-
bility, depth of the residue in Å and residue-occluded packing den-
sities were determined for all the mutations.
2.8. Interatomic interactions:

After predicting protein stability changes and changes in RNAP-
rifampin affinities, mutations at two positions vide H451 & P489
that highly destabilize rifampin binding and are experimentally
identified in the rifampin resistant leprosy patients [9,10] (present
in the set of 40 experimentally identified mutations – Supplemen-
tary Table 2), were analyzed for the changes in interatomic interac-
tions of the mutating residues using Arpeggio, a program that
maps the types of interatomic interactions of wildtype and mutant
residues with the residue environment based on atom type, inter-
atomic distance and angle constraints. Additionally, four mutations
at positions S437, G459, K884 & H1035 which are computationally
predicted to highly destabilize RNAP-rifampin interactions were
chosen and subjected to similar analysis. Intermezzo program
(Bernardo Ochoa Montano & Blundell TL unpublished) was also
used for interactive analysis of bonding patterns on Pymol
sessions.
2.9. Fragment hotspot maps:

Fragment hotspot maps aid in locating specific sites on the sur-
face of the protein that are topologically, chemically and entropi-
cally favorable for small molecule (fragment) binding. The atomic
hotspots on the drug target are explored computationally using
donor, acceptor and hydrophobic fragment probes, and introducing
a depth criterion to assist in estimating the small molecule binding
propensity. For ligand-binding proteins, the fragment hotspot
maps aid in understanding the pharmacophore characteristics of
the interacting regions. We mapped the hotspots on the b-
subunit of RNAP and colored the surface with regions that are least
impacted by any mutations (mutation coolspots).
3. Results

In total, 21,394 mutations were generated from 1126 residues
in the b-subunit of RNAP (Supplementary Table 1). The list of
experimentally identified mutations and their effects are sepa-
rately shown in Supplementary Table 2.
3.1. Multivariate analysis of free energy change predictions by various
computational tools for saturated mutations:

Along with the in-house developed mCSM and SDM tools for
prediction of protein stability changes upon saturated mutagenesis
of the b-subunit of RNAP, a comparative analysis was performed
with other sequence (PROVEAN, I-mutant 2.0 – Sequence),
structure- (CUPSAT, I-mutant 2.0-structure, MAESTRO) and NMA-
based tools (FOLDX, ENCOM, DynaMut). Average stability changes
caused by all possible mutations at each residue position in the b-
subunit of RNAP, as predicted by mCSM and SDM, were compared
with other structure-based predictors (Supplementary Fig. 1)
(rifampin-interacting residues are highlighted). Correlation of
overall stability predictions performed by mCSM with each of the
other tools indicated an ‘‘r” value of 0.55 with SDM, 0.61 with
MAESTRO, 0.72 with Imutant 2.0 (Structure) and 0.43 with CUP-
SAT. Correlations between mCSM, SDM and other sequence and
NMA based tools are shown in Supplementary Figs. 2 and 3. The
rationale for performing these correlations is to understand how
mCSM and SDM being structure-based predictors of stability
changes, relate to sequence-based methods and vibrational
entropy changes in normal mode perturbations.

3.2. Experimentally/Clinically identified mutations:

We performed a systematic literature review to list all the
mutations reported in the b-subunit of RNAP in M. leprae. We
noted 40 mutations at 32 unique residue positions. The reference
articles are listed in Supplementary Table 2. As depicted in
Fig. 1B, 77.5% [19] of the experimentally/clinically identified muta-
tions destabilize the b-subunit. Except for A411T and V424G muta-
tions, all the other residues are present in close proximity to
rifampin binding sites (Fig. 2A) and destabilize rifampin interac-
tions (as predicted by mCSM-lig).

3.3. Residue conservation and protein stability:

The stability changes, predicted after saturation mutagenesis of
each residue in the b-subunit, were compared with residue conser-
vation scores. CONSURF scores of less than zero are attributed to
conserved residues and scores of zero and above to variable resi-
dues (score 3 being highly variable). The average change in protein
stability that was predicted by mCSM for mutations at each residue
position ranged from 0.823 to �3.033 kcal/mol and that of SDM
varied from 2.167 to �4.36 kcal/mol. Residues that line the active
center cleft and interact with rifampin and the nucleic acid scaffold
are highly conserved, while surface exposed residues have variable
conservation scores (Fig. 2B). Rifampin-interacting residues
between positions ~400–500 are highly conserved and 87.3% of
the saturated mutations in this region destabilize the protein (Sup-
plementary Table 1). The maximum destabilizing effect of muta-
tions at each of these residues varied between �0.311 to
�4.311 kcal/mol (mCSM). The maximum destabilizing mutation
is defined as a mutation that induces a maximum decrease in Gibbs
free energy (stability change) of the b-subunit of RNAP, RNAP-
rifampin and RNAP-subunit interactions among all the 19 possible
mutations at each residue position (when predicted by mCSM,
SDM, mCSM-lig and mCSM-ppi software). The maximum destabi-
lizing effect predicted by mCSM for all possible mutations at each
residue was mapped on the structure to identify regions that are
largely impacted by mutations (Fig. 2C). Conversely, the residues
whose stability is least impacted by all possible mutations are col-
ored in blue to identify ‘‘mutation coolspots” that are potentially
areas of choice for targeting with small molecules in drug discov-
ery (Fig. 2D).

As part of the RNAP holoenzyme complex, the b-subunit inter-
acts with other subunits and has large interfacial regions. The
impact of mutations on the stability of these interfaces was mea-
sured using mCSM-PPI. It was noted that the maximum destabiliz-
ing effect by any mutation at a particular residue in the interface
between b and b0 subunits has an affinity change that ranged from
�0.021 to �5.108 kcal/mol (�5.108 kcal/mol was noted for muta-
tion W1074R which is not reported experimentally in rifampin
resistant leprosy cases). The interfacial region and the stability
changes are mapped on the structure (Fig. 3A and B).

3.4. Relative sidechain solvent accessibility (RSA), residue-depth,
residue-occluded packing density and protein stability:

The difference in relative solvent accessibility between wild
type and the mutant residues for all the mutations were calculated
using SDM. While analyzing the maximum destabilizing mutations
among all the possible mutations at each residue position, it was
noted that maximum destabilizing mutants at 751 residue posi-
tions (66.79%) showed increase in RSA. The maximum destabilizing
mutants at rest of the 375 positions indicated a decrease in RSA.



Fig. 2. [A] The b-subunit of RNAP with residues where mutations were reported experimentally from patient samples in various studies (Supplementary Table 2) (highlighted
in red). [B] Each residue in the b-subunit of RNAP that is colored by the conservations scores determined by CONSURF. The residues in green are variable (conservations scores
greater than 1) and are usually surface exposed. The residues in red are conserved with conservation scores less than 1 and usually form the core of the protein. The rifampin
binding site is highly conserved in M. leprae. [C] The maximum destabilizing effect (predicted by mCSM) on the protein stability for any mutation at each residue position, is
mapped on the structure. Red are the regions that are largely destabilized by mutations while the white regions are relatively stable with mutations. [D] The converse of B
where the regions, whose stability is least impacted by mutations, are coloured in blue and we called them ‘‘Mutation CoolSpots”. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. [A] The interfacial region of the b-subunit of RNAP highlighted in Maroon. [B]. The maximum destabilizing effect a mutation can induce on the interface stability, is
predicted by mCSM-PPI and mapped on the structure. Red indicates regions that are highly destabilized by mutations (-5.108 Kcal/mol) while the blue indicates stable
regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Among the 751 mutants with increase in RSA, 551 were hydropho-
bic and 121 substitutions within 551 were from polar/charged
(wildtype) to hydrophobic residues (mutants). As mutant
hydrophobic residues with increased solvent accessibility often
destabilize the protein [38], the destabilizing effects of these muta-
tions ranged from �1.021 to �4.311 kcal/mol. Additionally, these
substitutions resulted in a decrease in residue-depth [18] (ranging
from 0.01 Å to 1.83 Å), which is concomitant with the increase in
solvent accessibility. These changes in RSA and depth at the
rifampin-binding site are depicted in Fig. 4A and B.

From the maximum destabilizing mutations at all the 1126
positions, mutations at 586 (52.04%) residue positions resulted in
increase in residue-depth that ranged from 0.01 to 2.46 Å. Mutants
were generated using ANDANTE which places the side chains with-
out any steric clashes and the mutant models were subjected to
energy minimization. Hence the change in residue-depth is attrib-
uted to the buriedness of the residue and not just the natural
change from a larger to a smaller amino acid. The decrease in
residue-depth in the remaining 540 (47.95%) residues ranged from
0.1 to 3.02 Å. Similarly, the residue-occluded packing density [18]
increased at 539 residue positions (47.86%). These changes in RSA
and residue-depth are mapped as attributes on to the structure of
the b-subunit of RNAP and it was noted that most of the residues
that line the active center cleft have increase in RSA upon muta-
tions. Decrease in residue-depth was noted in residues at the
rifampin-binding pocket and at the subunit interfaces (Fig. 5A
and B).

3.5. Substitutions to aspartate predominate mutations that destabilize
the b-subunit-RNA affinity in RNAP:

The effects of mutations on b-subunit-RNA affinity was esti-
mated using mCSM-NA2. Substitutions to aspartate residues were
most common among mutations that highly destabilize b-subunit-
RNA interactions in RNAP. The mutant aspartate residues form p-p
Fig. 4. [A] Change in relative solvent accessibility for maximum destabilizing mutants in
mutant residue in the rifampin binding pocket (mCSM).
interactions with the nucleotides in RNA either by stacking or by
nucleotide-edge T-shaped and amino-edge T-shaped interactions.
Aspartate being an acyclic p-containing amino acid, readily forms
nucleotide (edge) amino (edge) or nucleotide (face) and amino-
acid (edge) interactions [39]. This ability of acyclic amino acids like
arginine, glutamic acid and aspartic acid to form a variety of
charged-p interactions with nucleotides in mutants may impact
the orientation of RNA molecules in the active center cleft of RNAP
leading to loss or gain in function. Approximately, 93% of the highly
destabilizing mutations at RNA-interacting residues are substitu-
tions to aspartate. Mutations to glutamate were also noted in
6.83% and additionally one each of methionine, proline and thre-
onine mutations indicated highly destabilizing effects.

3.6. Substitutions to arginine predominate mutations that destabilize
b-subunit-rifampin affinity:

Systematic mutations in the set of 70 residues that lie 10 Å from
the rifampin binding site reveal that mutations that largely desta-
bilize RNAP-rifampin affinities are primarily arginine and gluta-
mate substitutions (mCSM-lig). In the binding site, R173, R454,
R465 and R613 form hydrogen bonds and a network of other inter-
actions with rifampin that stabilize the molecule in the binding site
[4]. Introduction of additional arginine residues by mutations may
influence the stability and orientation of rifampin in the binding
site. The positively charged guanidinium ion of arginine forms
cation-p interactions with aromatic amino acids as noted in earlier
studies [40,41]. In the predicted mutations S437R and G456R, argi-
nine forms an intricate network of p interactions with surrounding
aromatic amino acids changing the shape of the binding pocket
and leading to a loss in rifampin interactions (rifampin retains only
two polar contacts with Q438 and F439 whereas wildtype has five
hydrogen bonds). The effects of mutations on RNA and rifampin
affinity as predicted by mCSM-NA2 and mCSM-lig were mapped
on to the structure (Fig. 6A and B).
the rifampin binding pocket (mCSM). [B]. Change in depth of the highly destabilizing



Fig. 5. [A] The change in relative side chain solvent accessibility with mutations was mapped on to the structure. Blue indicates a decrease in RSA while red indicates an
increase. [B] The changes in depth with highly destabilizing mutations at each residue position was mapped on the structure. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 6. [A] Stability changes in b-subunit -RNA and b-subunit- rifampin [B] interactions due to mutations in the binding sites as predicted by mCSM-NA2 and mCSM-lig. The
maximum destabilizing effect a mutation can cause at each residue position in the binding site is depicted on the structure.
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To determine if mCSM-lig predicted RNAP-rifampin binding
affinities can provide information on the degree of resistance asso-
ciated with each mutation in the rifampin binding site, we
attempted to correlate MIC values of M. tb rpoB mutants with
mCSM-lig predictions for RNAP-rifampin affinity in the structure
ofM. tb (PDB Id: 5UHC). A total of 40 mutations were selected from
two studies [12,42] and mCSM-lig predictions were correlated
with MIC values. It was noted that mCSM-lig predictions were
independent of the MIC values which was also observed in an ear-
lier study [43]. A table with MIC values and corresponding mCSM-
lig predictions was included in Supplementary Material S1
(Table SM1). Additionally, a table with saturated mutations for
all residues within 10 Å of the rifampin and their mCSM-lig predic-
tions were presented in Supplementary Material S1 (Table SM2).

3.7. Detrimental mutations:

Among all the experimentally identified and computational
predicted mutations, we selected those that highly destabilize
(maximum decrease in log affinity fold change among all 19 muta-
tions at each residue position) RNAP-rifampin interactions. Six
residues were chosen based on the following characteristics and
the structural effects of systematic mutations at each residue posi-
tion were analyzed (Table 2) as below:



Table 2
Detrimental mutations and their corresponding stability changes that influence holoenzyme assembly, rifampin and RNA interactions.

Method Wild-type
residue

Residue
position

Average stability
effect

Maximum stabilizing
effect

Mutant
residue

Maximum
destabilizing effect

Mutant
residue

mCSM-Stability (DDG in
kcal/mol)

S 437 �0.795 �0.072 L �1.701 H
H 451 �1.214 �0.104 Y �1.898 S
G 459 �0.713 �0.381 V �1.201 W
P 489 �1.135 �0.507 R �1.771 G
K 884 �1.227 �0.190 L �2.298 S
H 1035 �0.419 0.600 Y �1.421 G

mCSM-ppi (DDG in kcal/mol) S 437 �0.254 0.395 H �0.820 R
H 451 �0.652 �0.050 S �1.451 M
G 459 �0.397 0.237 H �1.042 R
P 489 �0.738 �0.138 W �1.372 R
K 884 �0.105 0.160 D �0.685 R
H 1035 �0.754 0.115 W �1.726 R

mCSM-NA2 (DDG in kcal/mol) S 437 �1.538 4.922 W �3.857 D
H 451 �1.300 5.147 W �3.632 D
G 459 2.289 8.556 W �0.221 D
P 489 1.926 8.195 W �0.582 D
K 884 0.221 6.647 W �2.130 D
H 1035 0.847 7.295 W �1.484 D

mCSM-lig (log-affinity change) S 437 �0.646 �0.484 L �1.062 R
H 451 �0.510 �0.076 W �0.777 E
G 459 �0.981 �0.715 A �1.236 R
P 489 �0.598 �0.254 L �0.917 R
K 884 �0.156 �0.368 D �0.925 R
H 1035 �0.121 0.097 V �0.501 E

SDM (DDG in kcal/mol) S 437 0.087 2.320 V �1.900 P
H 451 �0.756 1.290 L �2.800 G
G 459 �2.842 �1.780 V �3.800 P
P 489 �0.432 1.440 Y �1.070 E
K 884 0.108 1.270 V �1.820 P
H 1035 �0.200 0.590 V �1.410 P

MAESTRO (DDG in kcal/mol) S 437 �0.21 �0.14 K 0.24 F
H 451 �0.12 �0.05 G 0.22 R
G 459 �0.23 �0.17 S 0.33 W
P 489 �0.26 �0.22 H 0.31 M
K 884 �0.20 �0.14 G 0.25 M
H 1035 �0.27 �0.25 P 0.31 Y

CUPSAT (DDG in kcal/mol) S 437 2.70 7.98 I �1.12 G
H 451 2.01 6.92 W �3.25 K
G 459 �2.51 5.00 K �5.53 C
P 489 �2.76 �0.84 A �5.47 M
K 884 �2.99 3.42 I �8.03 H
H 1035 �1.07 2.15 C �3.23 Y

Imutant 2.0 Structure (Sign of
prediction)

S 437 4.05 9.00 A 1.00 F
H 451 6.00 8.00 G 3.00 L
G 459 6.63 9.00 N 3.00 I
P 489 7.11 9.00 G 3.00 L
K 884 6.42 9.00 G 2.00 M
H 1035 4.63 8.00 G 2.00 L

PROVEAN (DDG in kcal/mol) S 437 �4.79 �3.00 A �7.00 W
H 451 �8.66 �5.73 Y �10.37 C
G 459 �8.10 �6.00 A �10.00 L
P 489 �9.04 �7.99 A �10.99 F
K 884 �5.97 �2.91 R �7.75 C
H 1035 �8.98 �5.79 Y �10.61 C

Imutant 2.0 Sequence (Sign of
prediction)

S 437 4.47 7.00 F 0.00 H
H 451 3.21 7.00 P 0.00 F
G 459 3.53 7.00 H 0.00 A
P 489 6.89 9.00 G 5.00 L
K 884 3.53 8.00 V 0.00 G
H 1035 2.95 6.00 G 0.00 V

FOldX4 (DDG in kcal/mol) S 437 2.79 �1.44 I 12.39 R
H 451 1.78 �0.74 L 4.39 W
G 459 9.14 3.96 A 20.76 H
P 489 3.04 2.11 N 4.79 R
K 884 1.06 �2.12 Y 9.77 L
H 1035 0.77 �1.47 P 5.69 Y

(continued on next page)
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Table 2 (continued)

Method Wild-type
residue

Residue
position

Average stability
effect

Maximum stabilizing
effect

Mutant
residue

Maximum
destabilizing effect

Mutant
residue

ENCoM (DDSvib in kcal/mol/K) S 437 �0.44 0.48 G �1.50 W
H 451 0.34 0.97 G �0.46 W
G 459 �0.91 �0.29 A �1.55 W
P 489 �0.16 0.14 G �0.82 F
K 884 0.18 0.96 G �0.60 W
H 1035 0.19 0.73 G �0.26 W

DynaMut (DDG in kcal/mol) S 437 2.87 6.99 L �2.08 G
H 451 �0.74 2.17 Y �3.43 T
G 459 1.93 3.29 N �0.25 S
P 489 0.94 3.26 F �0.72 S
K 884 0.14 3.69 W �1.87 E
H 1035 0.21 2.38 W �2.29 G
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� Mutations that highly destabilize rifampin binding (at wildtype
S437 & G459 positions) as predicted by mCSM-lig.

� Experimentally/clinically identified and validated mutations
that highly destabilize rifampin binding (at wildtype H451 &
P489 positions) [9,10].

� Predicted extremely detrimental mutations for protein stability,
protein–protein and protein-nucleic affinities (at wildtype K884
& H1035 positions).

3.8. Detrimental mutations in the rifampin binding site:

We have noted that any mutation at rifampin-interacting resi-
dues S437, H451, R454, S456, L458, G459, R465, P489, P492 and
N493 destabilize protein ligand affinity (mCSM-lig). Of these we
have chosen wild-type residues H451 and P489, which are exper-
imentally identified mutations, and wild-type residues S437 and
G459, which are computationally predicted (only one mutation
was experimentally identified at residue position S437L (reported
by us earlier [4], and has destabilizing effects on the overall stabil-
ity of the protein and affinity to rifampin).
3.9. S437

Serine at position 437 in the wild-type structure forms main-
chain and sidechain hydrogen bonds with S434, G432 and R173.
The residue has a network of proximal polar interactions and
hence stabilizes the rifampin-binding pocket. It was noted that
any mutation at this position reduces rifampin affinity (mCSM-
lig) and stability of the b-subunit (mCSM) (Supplementary
Table 1) (Fig. 7A). The maximum destabilizing effect was noted
for substitution to histidine (�1.701 kcal/mol (mCSM)) and it
forms hydrogen bonds with S434 and Q438, aromatic bonds with
F431, and many ring-ring and p interactions with the surround-
ing residues which might largely effect the shape of the binding
pocket (Fig. 7B). Substitution with leucine causes a minimal
destabilizing effect (�0.072 kcal/mol (mCSM)) and stability
effects of all the other amino acid substitutions range from
�0.072 to �1.701 kcal/mol (mCSM).

S437 is located at 3.3 Å from the interface of b and b0 subunits.
Arginine substitution destabilized the interface with the predicted
stability change of �0.820 kcal/mol (mCSM-ppi). In the wild-type
structure, S437 is located 11.9 Å from the closest nucleic acid
molecule but is present on the helix that interacts with both
DNA and transcribing RNA in the active center cleft. An aspartate
substitution destabilized the protein-RNA interaction with pre-
dicted affinity change of �3.857 kcal/mol (mCSM-NA2). S437 is
located 4.0 Å from rifampin and forms only proximal interactions
with rifampin. However, this residue forms hydrogen bond
interactions with S434 and R173 that are important for the
attachment of rifampin to the binding pocket. The S437R muta-
tion disrupts the hydrogen bonds with S434 and R173 which
in-turn impact stability of rifampin in the binding pocket
(�1.062 kcal/mol (mCSM-lig)).

3.10. G459

Glycine at position 459 forms hydrogen bonds with Q435, L458
and G462, and carbonyl interactions with the P460. G459 is pre-
sent 4.6 Å away from rifampin and is involved in hydrogen bonds
with residues that interact with rifampin (Fig. 7C). A tryptophan
substitution largely destabilizes the binding pocket by the incorpo-
ration of hydrophobic and p interactions with the surrounding
residues. It forms side-chain hydrophobic interactions with L436,
L384 and F430. It also forms a ring–ring interaction with F430,
an atom-ring interaction with L384 and intergroup interactions
with Q178 and Q388. It forms multiple hydrogen bonds with the
surrounding residues, which may impact the orientation of the
binding pocket and destabilize the protein (Fig. 7D).

3.11. Clinically identified mutations that highly destabilize rifampin
binding:

From the 40 mutations that are reported from different
rifampin-resistant leprosy clinical isolates (Supplementary
Table 2), we have chosen two residues where mutations are extre-
mely detrimental to protein stability, protein ligand affinity, pro-
tein nucleic affinity and protein subunit interfaces. These
substitutions at positions H451 and P489 were studied in detail.

3.12. H451:

H451 in the wild-type structure lies 3.7 Å from rifampin and
4.1 Å from the interface. This residue forms cation – p interac-
tions with guanidinium group of R454, which in turn forms polar
interactions with rifampin (Fig. 8A). Additionally, H451 makes
two hydrogen bonds with mainchain amino group of R454 and
oxygen atom of S447. Mutations at this residue site largely
impact the stability and ligand binding. Substitution to serine
induced a change in stability of the protein with a decrease in
Gibbs free energy of �1.898 kcal/mol and a network of p interac-
tions that are present in the native structure, were lost in the
mutant (Fig. 8B).

Methionine substitution destabilizes b – b0 subunit interface
and leads to a change in free energy of �1.451 Kcal/mol. Methion-
ine forms carbonyl interactions with K452 and T450, a hydropho-
bic interaction with Q438 and weak hydrogen bond interactions



Fig. 7. [A] Interactions of S437 with the surrounding residue environment in the wildtype and of H437 in the S437Hmutant [B]. [C] Interactions of G459 with the surrounding
residue environment and [D] W459 in the mutant G459W. The red dotted lines represent hydrogen bonds. Orange dotted lines represent weak hydrogen bond interactions.
Ring-Ring and intergroup interactions are depicted in cyan. Aromatic interactions are represented in sky-blue and carbonyl interactions in pink dotted lines. Green dotted
lines represent hydrophobic interactions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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with rifampin. Although histidine or methionine do not directly
interact with the residues of the b0 subunit, the changes in the net-
work of p-interactions coupled with the addition of hydrophobic
bonds among proximal residues in the interface may change their
binding patterns leading to destabilization of the interface.

Substitution with glutamic acid induces a destabilizing effect on
the b-subunit-rifampin interaction. E451 forms weak hydrogen
bond, carbonyl and proximal hydrophobic interactions with the
residue environment but does not form any bonds with rifampin,
unlike the wild-type residue that forms proximal hydrogen bonds
with rifampin.
3.13. P489

Proline at position 489 is present in a loop which is in close
proximity to rifampin and forms hydrophobic interaction with
rifampin and weak hydrogen bond interactions with T488 and
Q490 (Fig. 8C). Mutations at the position 489 were reported in
rifampin-resistant leprosy patients from Thailand [9]. Glycine sub-
stitution destabilizes the protein (�1.771 kcal/mol) leading to a
loss of hydrophobic interaction with rifampin. Weak hydrogen
bond and carbonyl interactions, however, were retained in the
mutant model (Fig. 8D). Arginine substitution destabilizes inter-
face and rifampin affinities, with predicted stability changes of
�1.372 and �0.917 kcal/mol respectively. FoldX predicted a large
change in stability of 4.79 kcal/mol for difference between mutant
and wild types, which is highly destabilizing. FoldX optimizes the
sidechains and moves the structure to a lowest energy state (usu-
ally represented as a negative value) and hence the difference
between two negative energy values of wild and mutant is consid-
ered destabilizing.
3.14. Extremely detrimental mutations:

Mutations at residues positions K884 and H1035 were consid-
ered to be extremely detrimental. These residues lie in close prox-
imity to the interface, nucleic acids and rifampin. Substitutions at
these sites destabilize protomer, protein–protein interfaces (both
the residues reside at the subunit interface), protein-nucleic acid
and protein–ligand affinities. Both empirical (FoldX) and knowl-
edge based (mCSM and SDM) methods predicted destabilizing
effects.
3.15. K884

K884 is located 3.2 Å from the interface, 3.3 Å from the nucleic
acid and 8.6 Å from rifampin. Lysine forms mainchain hydrogen
bonds with L1033 and proximal hydrophobic interactions with
H1035 and V894. It also forms a cation - p interaction with
H1035 and most importantly a sidechain proximal hydrogen bond
with the sugar phosphate group of guanine (second) nucleotide in
the RNA transcript. This interaction is crucial for maintaining the
RNA interaction with rifampin in order to induce steric clash on
the adjacent nucleotide and halt transcription (Fig. 9A). Serine sub-
stitution at this site results in the loss of this vital interaction. S884
forms weak Van der Waals interactions with D883 and L885 and



Fig. 8. [A] Interactions of P489 with the surrounding residue environment in the wildtype and of G489 in the P489G mutant [B]. [C] Interactions of H451 with the
surrounding residue environment and [D] S451 in the mutant H451S.
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hydrogen bonds with L1033 and H1035. Interactions with RNA
backbone are lost in the mutant (Fig. 9B). The mutant is destabi-
lized (�2.298 kcal/mol).

Aspartate substitution at this site destabilizes RNA affinity
(�2.130 kcal/mol) and the mutant residue forms hydrogen bonds
with L1033 and H1035, and hydrophobic interactions with V894.
3.16. H1035

Histidine at position 1035 is located 3.5 Å from the interface
and RNA, and 8.8 Å away from rifampin. It forms a network of p
interactions with the surrounding residues. The ring-ring p inter-
actions with the fused pyrimidine-imidazole ring of guanine in
the first nucleotide of RNA transcript is vital to the orientation of
RNA transcript in the active center cleft (Fig. 9C). These interac-
tions are lost in substitutions with non-aromatic amino acids. It
was also noted that aspartate substitution largely destabilizes b
subunit -rifampin affinity (Fig. 9D).
3.17. Impact of mutations on flexible conformations:

The stability changes between the wildtype and each mutant in
lowest energy conformation were calculated by FoldX and have a
Pearson’s correlation coefficient (‘‘r” value) of 0.38 with other pre-
dictors mCSM and SDM. Although FoldX does not probe backbone
conformational changes, it optimizes the sidechain rotamers of the
mutant residues to attain a low energy state and calculates the
change in free energy between the states. We further sampled
the fully flexible conformers of the b-subunit and estimated
changes in vibrational entropy DS and protein stability using
ENCoM. A linear combination of vibrational entropy DS by ENCoM
and enthalpy changes by FoldX were used to calculate stability
changes. ENCoM predicted highly destabilizing mutations in the
rifampin binding and RNA interacting sites in the active center cleft
of the holoenzyme. DynaMut predictions correlated with ENCoM
values at an r value of 0.56. The average change in stability pre-
dicted by ENCoM and DynaMut for any mutation at each residue
position in the b subunit was mapped on the model (Fig. 10A
and B).
3.18. Protein stability changes and fragment hotspot maps:

Fragment hotspots were mapped on the structure that is col-
ored by regions predicted to have least protein stability changes
due to any mutations (using mCSM, SDM and FoldX software). As
fragment hotspot maps program identifies small molecule binding
propensity on the surface of the protein, we used only the protein
stability prediction software to identify areas that are stable by any
mutations. The regions of the b subunit that are least impacted by
mutations (mutation coolspots) are overlaid with fragment hotspot
maps. The site B (Fig. 11), which is in close proximity to the RNA
binding region and is a pocket at the b-b0 subunit interface, is least
impacted by mutations and has a hotspot at the contouring score
of 17 with donor, apolar and acceptor regions [22]. Secondly, the
site A, although located away from the catalytic core of the
enzyme, is present in the path of entry/exit point for template
DNA into the holoenzyme complex and a small molecule interac-
tion at this site can potentially impact template DNA interactions
or induce conformational change in the crab-claw-shaped b sub-
unit leading to disruption in the holoenzyme assembly.



Fig. 10. [A] The maximum destabilizing effects on the protein stability, a mutation can induce at each residue position in the flexible conformations (as predicted by ENCoM
[A] and DynaMut [B]), are mapped on the structure. Regions in red represent highly destabilizing while the blue regions are relatively stable with mutations. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. [A] Interactions of K884 with the surrounding residue environment in the wildtype and of S884 in the K884S mutant [B]. [C] Interactions of H1035 with the
surrounding residue environment and [D] D1035 in the mutant H1035D. The blue dotted lines represent cation-p interaction. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Fragment hotspots were mapped on the structure which was coloured with maximum destabilizing effects of systematic mutations at each residue positions. Blue
represents regions which are least impacted by any mutations. Stable and potential small molecule binding sites ‘‘A” and ‘‘B” are depicted on the structure.

284 S.C. Vedithi et al. / Computational and Structural Biotechnology Journal 18 (2020) 271–286
4. Discussion

In the absence of a rapid and an effective laboratory-based
diagnostic tool for determining drug resistance in leprosy, identi-
fication of mutations known to confer resistance to individual
drugs in MDT remains an appropriate approach for diagnosing
drug resistance. Associations between mutations in the drug tar-
gets and clinical resistance to individual drugs in MDT are often
validated by mouse-footpad experiments in which, resistant
strains (with known mutations) are propagated in the hind foot-
pads of mice (cross-bred albino) in the presence of drugs under
study [4]. Owing to high percentage identity of the b subunit of
RNAP of M. leprae with that of M. tuberculosis, identical mutations
that are experimentally proven to confer rifampin resistance in
tuberculosis, are considered as likely drug-resistant mutations
in leprosy. The experimentally known mutations in M. leprae
were those identified by DNA sequencing of rpoB gene (derived
from skin tissue DNA of relapsed/drug resistant leprosy patients)
and published in different studies (reference for each mutation is
listed in Supplementary Table 2). Most of these were validated in
either mouse foot-pad experiments or by using surrogate genetic
hosts [5].

Around 40 different rifampin-resistance mutations were noted
in M. leprae from clinical isolates around the world using amplicon
sequencing of RRDR [10]. All of these mutations decrease the sta-
bility of rifampin binding to the b-subunit (Supplementary Table 2)
and the mutant strains exhibited normal grown patterns in the
mouse footpads when administered with rifampin in doses equiv-
alent to WHO regimen of multibacillary MDT [44]. This indicates
that mutations structurally and functionally impact rifampin inter-
actions and influence concomitant resistance.

Thermodynamic stability of the proteins essentially influences
their function and is largely dependent on the sequence. Missense
mutations that lead to amino acid substitutions often impact pro-
tein stability, shifting it towards either a stabilized or a destabi-
lized state [7]. Experimental measurements of stability changes
in proteins are often challenging especially with large and complex
protein machineries like RNAP. However, mutations within each
subunit of the RNAP complex, and primarily the rifampin binding
b-subunit, have clinical implications and influence rifampin-
resistance outcomes in mycobacterial diseases [45]. The perfor-
mance of various structural, sequence and NMA based predictors
for predicting protein stability changes upon mutations vary lar-
gely in terms of their accuracy and bias [46], but offer a quick
and a helpful alternative to understanding the association between
mutations and resistance phenotypes [6].

Given the absence of a rapid and experimentally validated sys-
tem to read the impact of mutations in the b-subunit of RNAP inM.
leprae with clinical rifampin resistance outcomes in leprosy, we
conducted computational saturation mutagenesis to determine
regions on the b-subunit that impact the overall stability,
protein-subunit interfaces, protein-nucleic and protein–ligand
affinities. Being a part of the complex transcriptional machinery
in the mycobacterial cell, the compositional and conformational
stability of the b-subunit is crucial to binding of DNA template
and synthesis of complementary RNA transcript in the active cen-
ter cleft of the holoenzyme [47,48]. As rifampin blocks the growing
RNA transcript through steric occlusion, its binding and orientation
in the binding pocket is vital to its function [47]. Mutations within
the RRDR impact rifampin interactions and overall stability of the
subunit. As noted from Supplementary Table 2, all the experimen-
tally identified rpoB gene mutations from M. leprae indicated a
destabilizing effect on the protein–ligand affinity. Owing to the
robustness of these predictions, we employed an in-silico satura-
tion mutagenesis model to understand the impacts of systematic
mutations at each residue site of the subunit.

The destabilizing mutations are given preference over muta-
tions that are silent or have minimal effects on the stability. This
is to explore and understand the possible structural and functional
implications of emerging detrimental mutations (reported or new)
that can influence rifampin resistance outcomes in leprosy. We
used different structural, sequence and NMA based tools to identify
and compare the predictions. mCSM stability predictions had
better correlations with the other predictors (SDM (r = 0.55),
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MAESTRO (r = 0.61), Imutant 2.0 Structure (r = 0.72), CUPSAT
(r = 0.43), Imutant 2.0 Sequence (r = 0.62) and DynaMut (r = 0.61)).

Protocols (Computational Saturation Mutagenesis (CoSM)) [49]
that use molecular dynamic equilibration, sidechain flips and
energy minimization to improve side conformations in mutants
enable prediction of stability changes with better accuracy and
correlation with the experimentally deciphered stability changes
(r = 0.9). However, these protocols are computationally intensive
and require high performance computing systems and time. CoSM
had a similar performance to FoldX, which was used in the current
study. Given the large sample size, molecular dynamic equilibra-
tion of sidechain rotamers is beyond the scope of this study.

In conclusion, we have deciphered the predicted effects of all
possible mutations in the b-subunit of RNAP in M. leprae using
computational saturation mutagenesis model, probing structural,
sequence driven and dynamic changes that impact overall stability
of the protein, RNA and rifampin affinities. The predicted impacts
were mapped onto the structures and highly detrimental muta-
tions were further analyzed for their changes in interatomic inter-
actions. Due to the lack of adequate experimental data on stability
changes in b-subunit of RNAP upon mutations, we have limited
information on the accuracy of the predictions, however, all the
prediction tools used in the study are well tested and validated
software which are proven to perform with reasonable accuracy
and minimal bias on various relevant mutational datasets [31].
To date there were no studies describing the phenotypic resis-
tance/susceptibility outcomes in strains with compensatory muta-
tions in RNAP. Further studies on saturation mutagenesis of the
entire RNAP holoenzyme complex may provide comprehensive
information on the effects of co-evolving and compensatory muta-
tions in other subunits on rifampin binding and function.
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