
Published online 21 May 2018 Nucleic Acids Research, 2018, Vol. 46, Web Server issue W127–W132
doi: 10.1093/nar/gky375

Kinact: a computational approach for predicting
activating missense mutations in protein kinases
Carlos H.M. Rodrigues1, David B. Ascher1,2,3,* and Douglas E.V. Pires3,*

1Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, 2Department of
Biochemistry, University of Cambridge and 3Instituto René Rachou, Fundação Oswaldo Cruz
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ABSTRACT

Protein phosphorylation is tightly regulated due to
its vital role in many cellular processes. While gain
of function mutations leading to constitutive activa-
tion of protein kinases are known to be driver events
of many cancers, the identification of these muta-
tions has proven challenging. Here we present Kin-
act, a novel machine learning approach for predict-
ing kinase activating missense mutations using in-
formation from sequence and structure. By adapting
our graph-based signatures, Kinact represents both
structural and sequence information, which are used
as evidence to train predictive models. We show the
combination of structural and sequence features sig-
nificantly improved the overall accuracy compared to
considering either primary or tertiary structure alone,
highlighting their complementarity. Kinact achieved
a precision of 87% and 94% and Area Under ROC
Curve of 0.89 and 0.92 on 10-fold cross-validation,
and on blind tests, respectively, outperforming well
established tools (P < 0.01). We further show that
Kinact performs equally well on homology models
built using templates with sequence identity as low
as 33%. Kinact is freely available as a user-friendly
web server at http://biosig.unimelb.edu.au/kinact/.

INTRODUCTION

The ability of cells to recognize and correctly respond to
their microenvironment is crucial for survival. In order
to dynamically respond to cellular signals, fast dynamic
switches are required. Protein phosphorylation is the most
widespread type of post-translational modification, with
over one-third of the proteins in the human proteome phos-
phorylated (1). The dynamic equilibrium between phospho-
rylation and dephosphorylation is stringently regulated,
and provides a rapid mechanism to modulate protein be-
haviour and activity across most signalling pathways (2).
Loss of control over this regulation process, through the

introduction of dominant activating mutations in kinases
and the consequent hyperphosphorylation of their targets
can have many phenotypic consequences, including the de-
velopment and metastasis of many cancers (3–7), and the
development of other metabolic disorders (8).

Advances in next generation sequencing techniques are
leading to the identification of a range of novel mutations,
including in kinases. In the absence of experimental infor-
mation, it is currently challenging to identify mutations
that are likely to lead to constitutive activation of kinases.
While many computational approaches have been proposed
for predicting the effects of mutations that disrupt activity,
these approaches have been shown to be of limited success
to predict gain of function mutations, as also shown on this
work, despite the important roles they play in many dis-
eases, particularly in cancer.

To fill this gap, here we present Kinact, a machine
learning-based predictive model and web server. Using our
graph-based signatures, the method was tailored to accu-
rately identify kinase activating mutations from a combina-
tion of sequence and structural information.

MATERIALS AND METHODS

Data sets

Mutations were derived from three mutational databases
with experimental evidence of their functional consequence:
Kindriver (9); ClinVar (10); and Ensembl (11). Kinase mu-
tations were divided into two groups based upon the avail-
able experimental evidence: activating and non-activating
mutations. The non-activating group is represented by vari-
ations that either disrupt activity (inactivating) or have no
significant biological effect (neutral). The activating muta-
tions were defined by a significant experimentally measured
increase in kinase activity.

The complete data set contained 384 mutations (260 ac-
tivating and 124 non-activating) distributed across 42 pro-
teins, of which 256 (186 activating and 70 non-activating)
could be mapped onto experimentally solved 3D structures.
Supplementary Figures S1 and S2 of Supplementary Mate-
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rials summarises the composition and the class distribution
of mutations over the data set.

The dataset of mutations with experimental structures
available, which account for 256 mutations, was randomly
split into training and blind test sets. The proportion of ac-
tivating and non-activating mutations on training and blind
test sets is similar to observed on the original dataset as an
attempt to prevent bias on the final method. The training
set is comprised of 179 mutations (130 activating and 49
non-activating) that were used to train Kinact under 10-
fold cross validation. The remaining 77 (56 activating and
21 non-activating) were used as blind test for validating the
predictive model, minimizing the risk of overfitting. In or-
der to assess the quality of the sub sets selected for training
and blind test we repeated this process 20 times and the fi-
nal version of the web server was built using the predictive
model with best performance. Average and standard devia-
tion values are reported on Supplementary Materials.

In addition, 41 mutations (24 activating and 17 non-
activating in 14 kinases) that did not have experimentally
solved structures available, therefore were not part of the
original 256 mutations, had their structure modelled using
homology modelling for further evaluation of Kinact pre-
dictive performance as a blind test.

Feature engineering

The task of predicting and understanding the effects of mu-
tations in proteins at a molecular level has been tackled
by approaches using different biological features, each with
their own assumptions and limitations. Protein structural
and sequence features have been the two most popular cat-
egories of attributes used by these computational methods.
Sequence-based features have focussed predominantly on
the analysis of sequence residue conservation throughout
a protein family and homologs (12) and sequence compo-
sition (13). By contrast, previous studies have used a wide
range of structural features, including secondary structure,
solvent accessibility and dihedral angles (14,15). Significant
effort has also been employed on more computationally in-
tensive approaches to model mutation effects from the use
of force fields and energy terms, to molecular dynamics sim-
ulations (16,17).

As an alternative, the use of graph-based structural sig-
natures have been shown to be a scalable and effective
approach for modeling the residue environment, which
was successfully employed to train machine learning-based
methods to predict and elucidate effects of mutations on
protein stability and interactions with their partner (18–26).
Moreover, these have also been used to provide insights into
the molecular mechanisms of mutations and how they lead
to disease and disease predisposition (27–33) and drug re-
sistance (34–41). These graph-based signatures are predom-
inantly composed of distance patterns extracted from the
wildtype residue environment, which together with a phar-
macophore modelling of its components, has been shown
to be an effective way to model both geometry and physic-
ochemical composition of protein regions.

Despite these diverse range of approaches, a combina-
tion of sequence and structural information has also been
proven to be valuable when predicting damaging muta-

tions (42,43). Based on these assumptions, graph-based sig-
natures together with complementary sequence and struc-
tural information were used to build a predictive model.
This complementary information included: (a) wild-type
residue environment descriptors, (b) wild-type residue inter-
actions, (c) predicted stability changes upon mutation, (d)
sequence-based predicted effects on protein function and (e)
the mCSM mutation pharmacophore modelling. A total of
82 different attributes (72 structural and 10 sequence-based)
were calculated for each mutation in our dataset. These were
then provided as evidence to train and test supervised learn-
ing algorithms using the Weka Tool Kit (44). The attributes
used on this work were categorised into six different groups
and summarised in Supplementary Table S1 of Supplemen-
tary Materials.

WEB SERVER

We have implemented Kinact as a user-friendly, freely avail-
able web server (http://biosig.unimelb.edu.au/kinact/). The
server front end was built using Bootstrap framework ver-
sion 3.3.7, while the back-end was built in Python via the
Flask framework (Version 0.12.2). It is hosted on a Linux
server running Apache.

Input

The server provides two different input options for the user
(Supplementary Figure S4). The ‘Single mutation’ option
allows users to predict whether a given mutation will lead
to protein kinase activation or not. This option requires the
user to provide a PDB (45) file or PDB accession code of
the kinase, the point mutation specified as a string contain-
ing the wild-type residue one-letter code, its corresponding
residue number and the mutant residue one-letter code, and
the chain identifier of the wild-type residue. The primary
sequence of the kinase of interest in fasta format is also re-
quired. The ‘Mutation list’ option allows users to upload a
list of mutations in a file for batch processing. In order to
aid users to submit their jobs, sample submission entries are
available on the submission page and a help page is available
via the top navigation bar.

Output

For the ‘Single mutation’ option, as shown in Figure 1, the
web server displays in the output page the prediction out-
come of Kinact, the details of the user input data, such as
structure of wild-type and mutant residues, and also infor-
mation on the kinase group in which the submitted struc-
ture was assigned to, based on sequence similarity accord-
ing to the Standard Kinase Classification Scheme (46).

In addition, Kinact provides a set of analyses to help
users investigate in greater detail the impact of the mutation.
All resources displayed within the analysis section, includ-
ing Pymol Sessions and the Multiple Sequence Alignment
in fasta format, are made available for download.

The first item in the analysis section (Supplementary
Figure S5) allows users to explore the 3D structure and
the inter-residue interactions established by the wild-type
residue, calculated by Arpeggio (47). Below this, users can
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Figure 1. Web server results page for a single mutation prediction. The predicted outcome is shown alongside with complementary information on the
submitted protein and the details of the mutation being evaluated. In addition, Kinact displays information on the group of homologue protein kinases
according to the Standard Kinase Classification Scheme. The effects of mutation on protein stability calculated by mCSM (21), SDM (43) and DUET (25)
are also shown.

also explore the conservation of residues with the struc-
ture of the wild-type kinase (Supplementary Figure S6).
The 3D structure of the kinase of interest is displayed
and colored according to conservation within the kinase
sub-group, from red (not conserved) to blue (conserved).
The structures are displayed in an interactive viewer imple-
mented with 3Dmol.js (48).

Finally, users can also explore, within the analysis sec-
tion, a multiple sequence alignment of the sequence of the
provided structure and those from the closest kinase group
according to the Standard Kinase Classification Scheme,
assigned by similarity (Supplementary Figure S7). Previ-
ously experimentally characterised point mutations within
any kinases of the group are highlighted, enabling users to
rapidly identify through homology the effect of mutations
at the corresponding residue position.

For the ‘Mutation list’ option, the server output is shown
as a downloadable table (Supplementary Figure S8) and
users also have the option to analyse each mutation sepa-
rately, similarly to what was described for the ‘Single muta-
tion’ option.

VALIDATION

In order to evaluate the quality of the training and blind
test sets used we performed a resampling of these subsets
20 times and evaluated the performance of the predictive
model on each split using AUC and precision. All values

for the blind tests are reported on Supplementary Materi-
als for each sample. Average and standard deviation are also
shown and no bias was identified. Here we compare the per-
formance of the best predictive model of Kinact with widely
used tools to study the effects of mutations in proteins func-
tions PolyPhen2 (42), SIFT (12) and wKinMut2 (49), a tool
to identify and interpret pathogenic variants in human pro-
tein kinases.

Performance on cross validation

In order to better evaluate the contribution of structure and
sequence-based attributes on the performance of supervised
learning algorithms, three different predictive models were
generated. The first model uses only attributes that rely on
protein sequence information, which include mutation tol-
erance predictions (12,42), as well as a pharmacophore dif-
ference vector between wild-type and mutant residues, as
proposed by the mCSM signatures (21), for this model we
used the complete original dataset of 384 mutations. The
second model uses only structural attributes calculated us-
ing the experimental structural data from the PDB. These
include the graph-based structural signatures and comple-
mentary descriptors described in Supplementary Table S1
of Supplementary materials. Finally, the third model was
constructed based on a combination of all attributes, us-
ing both sequence and structural data. For the models that
used structural data on their predictions we used only the

Downloaded from https://academic.oup.com/nar/article-abstract/46/W1/W127/5000015
by University of Melbourne Library user
on 15 August 2018



W130 Nucleic Acids Research, 2018, Vol. 46, Web Server issue

Figure 2. Comparative performance of Kinact. The ROC curves obtained for the training data set for models using sequence information alone, structural
information alone, and the Kinact combined model is shown in (A). Kinact (AUC of 0.89), performs significantly better (P-value < 0.01) than the models
using either just sequence or structural data (AUC of 0.77 and 0.83, respectively). In order to compare the performance of Kinact against the widely
used tools SIFT, PolyPhen-2 and wKinMut2, a blind test (B) over a non-redundant test was evaluated and Kinact (AUC of 0.96) significantly (P-value <

0.01) outperformed all three methods (AUC of 0.54, 0.70 and 0.52, respectively). Using homology models (C), Kinact was also able to accurately identify
activating mutations (AUC of 0.77), and again outperformed the other methods.

dataset of mutations with experimental structure available,
which accounts for 256 mutations.

In order to run and assess the performance of the ma-
chine learning algorithms, we split each dataset into 70% of
the mutations for training and 30% for blind test. In that
sense, for the model that uses only sequence-based data we
used 268 mutations for training (182 activating and 86 non-
activating) and 116 for blind test (77 activating and 39 non-
activating). For the other two models that used structure-
based features 179 mutations were used for training and 77
mutations for blind test as previously described. All mod-
els were trained under 10-fold cross validation. Supplemen-
tary Figure S3 of Supplementary Materials summarises the
distribution of activating and non-activating mutations in
training and blind test sets for all models. Machine learning
methods, evaluation procedures and performance metrics
used are described in Supplementary Data.

A series of experiments were carried out to assess the per-
formance of Kinact to predict whether a given mutation
was likely to lead to constitutive activation of a kinase. The
ROC curves across the training data set for models using
sequence information alone, structure-based features alone,
and the Kinact model that combines both attribute classes
are shown in Figure 2. Details on the evaluation metrics
for each algorithm are summarised on Supplementary Ta-
bles S2-S4 in Supplementary materials. Across the complete
training set, Kinact achieved a Precision of 87% and Area
Under ROC Curve of 0.89, significantly higher than the
models using either just sequence or structural data (AUC
of 0.77 and 0.83, and Precision of 0.78 and 0.81, respec-
tively, P < 0.01). The final predictive models were trained
using the full training set and all the performance evalua-
tion metrics were calculated considering the average values
for all 10 folds from cross validation.

Blind test

In order to properly evaluate the method’s predictive per-
formance and generalization, Kinact was initially evaluated
against a separate, independent, non-redundant blind test

set comprised of 77 missense mutations in protein kinases
with available experimental structures, achieving a precision
of 97% and Area Under ROC Curve of 0.96. When compar-
ing with other methods, Kinact significantly outperformed
(Figure 2B) all three methods (P-value < 0.01). Looking
specifically at the activating mutations, SIFT predicted 55%
of mutations as deleterious (score < 0.05), PolyPhen-2 clas-
sified 84% as probably damaging (score > 0.85), and wKin-
Mut2 predicted 62% of mutations as disease related (score
> 0), while Kinact correctly classified 99% of them. Com-
parisons of Kinact with tools that assess the effects of mu-
tations on protein stability are described on Supplementary
Materials.

Homology models

The performance of the web server to accurately classifying
mutations using homology models was evaluated using a set
of 41 mutations in kinases without experimentally resolved
structures. Homology models of the kinases were generated
by Modeller (50) using experimentally resolved structures
down to 33% sequence identity. Using the homology mod-
els, Kinact was able to accurately identify activating muta-
tions (AUC of 0.77 and precision of 0.78), providing confi-
dence and robustness in the applicability of this approach
beyond experimental structures to those that are compu-
tationally modelled. This was also significantly better than
PolyPhen-2, SIFT and wKinMut2 (Figure 2C). When com-
paring the performance of the methods specifically at the
activating mutations, Kinact was able to classify correctly
100% of mutations, while SIFT predicted 75% as deleteri-
ous (score < 0.05), PolyPhen-2 classified 83% as probably
damaging (score > 0.85), and wKinMut2 predicted 77% as
disease related (score > 0).

CONCLUSION

We present here, Kinact, a predictive model and web server
tailored for identifying kinase activating mutations using
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graph-based signatures, sequence and structural data. Kin-
act conveniently combines high-performance, open access,
web visualization tools to assist research on how mutations
affect protein kinases activity as well as prioritise mutations
for further investigation. Given the importance of these
variants in the context of many diseases, especially on the
development of many types of cancer, and also that widely
used tools have not been able to successfully predict gain of
function mutations, we believe Kinact will be a useful tool
to help identify and understand the role of these mutations.
The method is freely available as a user friendly and easy to
use web server at http://biosig.unimelb.edu.au/kinact/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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