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ABSTRACT

Over the past two decades, several computational
methods have been proposed to predict how mis-
sense mutations can affect protein structure and
function, either by altering protein stability or in-
teractions with its partners, shedding light into po-
tential molecular mechanisms giving rise to differ-
ent phenotypes. Effectively and efficiently predict-
ing consequences of mutations on protein–nucleic
acid interactions, however, remained until recently a
great and unmet challenge. Here we report an up-
dated webserver for mCSM–NA, the only scalable
method we are aware of capable of quantitatively
predicting the effects of mutations in protein cod-
ing regions on nucleic acid binding affinities. We
have significantly enhanced the original method by
including a pharmacophore modelling and informa-
tion of nucleic acid properties into our graph-based
signatures, considering the reverse mutation and by
using a refined, more reliable data set, based on a
new release of the ProNIT database, which has sig-
nificantly improved the reliability and applicability
of the methodology. Our new predictive model was
capable of achieving a correlation coefficient of up
to 0.70 on cross-validation and 0.68 on blind-tests,
outperforming its previous version. The server is
freely available via a user-friendly web interface at:
http://structure.bioc.cam.ac.uk/mcsm na.

INTRODUCTION

The interaction of proteins with DNA and RNA is essential
for a wide variety of cellular processes, in particular for the
proper regulation of gene expression, and DNA replication
and repair. Mutations in these nucleic acid binding proteins
lead to a range of diseases including cancer and SCID (1–
5). With the advances in high-throughput sequencing, there

has been a significant demand for approaches capable of de-
tecting the consequences of novel mutations on the intricate
regulatory balance of the cell. Traditional methods, while
slow and laborious, have allowed for direct determination
of the impact of these mutations. Increasingly genomic se-
quencing is being used to guide diagnosis and treatment op-
tions for cancers, but experimental approaches are proving
inadequate for dealing with the vast amounts of data and
variation not only between individuals, but also from the
faster evolving cancer genomes.

Many efforts to computationally predict and model the
effects of mutations on protein structure and function have
started to help unravel the link between genotype and phe-
notype (6–16). Predicting the effects of mutations on al-
tering protein–nucleic acid interactions, however, has been
more intractable, with most approaches relying upon the
use of force-fields, with limited success or scalability.

We have previously used the concept of graph-based sig-
natures to model a broad range of molecular phenomena.
This has included the effect of mutations on protein sta-
bility (17,18), and interactions with other proteins (18,19),
small molecules (20–22) and metal ions (8). We also used
these signatures to scalably look at, for the first time, the ef-
fects of mutations on protein–nucleic acid binding affinities
(18). The complexity of nucleic acid chemistry and binding
also hindered the development of methods to assess the ef-
fects on mutations, which is compounded by the other struc-
tural effects that a mutation might exert of protein structure,
folding and interactions. This also limited the availability of
high quality data, necessary to develop new methods.

By using a subset of high-quality data from the ProNIT
database (version 2.0) (23), we have developed mCSM–NA
using our graph-based signature concept, a method that
provides a reliable, scalable way to predict and characterize
the effect of a single point missense mutation on protein–
nucleic acid binding.
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Figure 1. mCSM–NA workflow and application. The method relies on graph-based structural signatures that model distance patterns on the wild-type
residue environment. Atoms at the vicinity of the mutated residue are labelled based on a pharmacophore modeling which are then used on the signatures
to describe both geometry and physicochemical properties of the environment. Complementary information including distance from mutated residue to
nucleic acid and predicted protein stability change upon mutation are also used to train, test and validate the predictive model.

MATERIALS AND METHODS

Data sets and validation

In order to assess the applicability of our mutational cut-
off scanning matrices (mCSM) graph-based signatures in
predicting the impact of mutations on protein–nucleic acid
binding affinities, a dataset derived from ProNIT was used.
ProNIT is a collection of experimental thermodynamic pa-
rameters for wild-type and mutant protein–nucleic acid
complexes, including the change in binding affinity (or
Gibbs free energy of folding; �G), linked to published
experimental structures of the complexes. A total of 331
single-point mutations across 38 different complexes were
considered, 258 of which reduced affinity of the protein
for the nucleic acid. The experimental distribution of the
changes in binding affinity across this dataset is shown in
Figure S1 of Supplementary Materials. The datasets were
further classified based upon the nature of the nucleic acid
- whether they included double-stranded DNA (dsDNA;
222 single-point mutations across 28 complexes), single-
stranded DNA (ssDNA; 42 single-point mutations across 6
complexes) or RNA (67 single-point mutations across five
complexes).

The free energy (�G) of a system can be represented as
a thermodynamic state function. Therefore, the ��G of
a mutation from the wild type to mutant (��Gwt→mut) is
approximately equal to the ��G of the reversed mutation
from mutant to wild type protein (��Gmut→wt). In order to
prepare a more balanced dataset, to avoid the potential bias
of the machine learning methods from the naturally skewed
datasets of experimental observations (originally only 74
mutations increased protein–nucleic acid affinity), the mu-
tant structures were modeled using Modeller (24) and incor-

porated into the training dataset, for a total of 662 single-
point mutations.

mCSM–NA was trained under 10-fold cross validation
(see Supplementary Methods). It was further evaluated us-
ing two separate independent blind test sets. The first vali-
dation set was comprised of 79 missense mutations affect-
ing RNA binding from 14 different protein–RNA com-
plexes. This dataset was derived from the work involving
recognition of hotspots by Barik et al. (25). The second
set includes four well characterized inactivating and res-
cue mutations on the tumor suppressor protein p53 (26).
The structure of the p53–DNA complex (PDB: 4HJE) was
used. Training and test sets, including the protein struc-
tures used, are available to download on the webserver at
http://bleoberis.bioc.cam.ac.uk/mcsm na/data.

Graph-based structural signatures

mCSM–NA uses our well validated graph-based structural
signatures to represent the protein–nucleic acid complex,
that model both the geometry and physicochemical prop-
erties of the interactions and architecture of the wild-type
structure. Our signatures represent atoms characterized as
nodes and their interactions as edges, with their physico-
chemical properties encoded based upon the amino acid
residue properties, denoted by a pharmacophore. In addi-
tion to our previous atom typings in the signatures mod-
elling protein residue atoms, additional information was
provided to encompass the nature of the nucleic acid bases.
Two different classes of pharmacophores were evaluated.
The first classifies nucleic acid atoms based on the nature of
the nucleotide: atoms were labelled as belonging to purines
or pyrimidines. The second modeling divides the nucleotide
in phosphate, sugar and base, with atoms labeled based on
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Figure 2. Web server results page for a single mutation prediction. The predicted change in affinity upon mutation (��G in kcal/mol). Complementary
information also displayed include nucleic acid type, residue solvent accessibility and predicted effect on protein stability. The protein complex and mutated
residue can be visualized directly from the server, also allowing the users to download a pymol session of the residue and its interactions.

the group they belong. The later pharmacophore modelling
was the best performing option and was chosen.

From this representation of the residue environment, dis-
tance patterns between atoms characterized by their prop-
erties are summarized in concise signatures as cumulative
distributions, and used as evidence for machine-learning
methods. Complementary information including the dis-
tance between mutated residue to the nucleic acid and the
predicted protein stability change upon mutation are also
used as evidence to train and test the predictive models. Dif-
ferent supervised learning algorithms for regression imple-
mented and available on the Weka Toolkit (27) were evalu-
ated based on the Pearson’s correlation coefficient and the
best performing method selected (Gaussian Process) (28).
The mCSM–NA prediction workflow is shown in Figure 1.

WEBSERVER

We have implemented mCSM–NA via a user-friendly freely
available webserver, available at: http://structure.bioc.cam.
ac.uk/mcsm na. The server front end was built using Boot-
strap framework version 3.3.7, while the back-end was built
in Python via the Flask framework (Version 0.10.1), on a
Linux server running Apache.

Input

The server provides two different input options for the user,
as shown in the job submission interface (Supplementary
Figure S2). The ‘Single Mutation’ option allows the user to
predict the effect of a single mutation on the binding affin-
ity of a protein–nucleic acid complex. The information re-
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Figure 3. Regression plot between the experimental and predicted changes in binding affinity (in kcal/mol) during cross-validation. mCSM–NA obtained
a Pearson’s correlation of 0.7 across the original data set (A). The performance of the model against complexes containing RNA (B), ssDNA (C) and
dsDNA (D) are shown, highlighting the accuracy and applicability of mCSM–NA to handle all different types of protein–nucleic acid complexes. The
overall Pearson correlation coefficients, including outliers, is shown in red; with the correlation after removing outliers shown in black.

quired includes a PDB file or a PDB code of the protein–
nucleic acid complex and nucleic acid type (either RNA, ss-
DNA or dsDNA), the point mutation specified as a string
containing the single letter code of the wild-type residue in
the protein, its corresponding residue number and the sin-
gle letter code of the mutant residue, and the chain identifier
of the residue. The ‘Mutation list’ option allows the user to
upload an input file containing a list of up to 20 mutations
and chain identifier (input string format similar to the first
option) each in a separate line.

The predictions are performed as a regression task (nu-
merical prediction of the difference in the Gibb’s free energy
of binding, ��G). In order to aid users to submit their jobs,

sample submission entries are available on the submission
page and a help page has been implemented and is accessi-
ble via the top navigation bar.

Output

For the ‘Single Mutation’ option, the webserver outputs
the predicted change in binding affinity in Kcal/mol, along
with a summary of the input (Figure 2). A negative value
(and red writing) corresponds to a mutation predicted as
reducing affinity; whilst a positive sign (and blue writing)
denotes a mutation predicted to increase the binding affin-
ity.
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A separate panel lists the structural features that include
relative solvent accessibility and the predicted effect of the
mutation on protein stability. The uploaded PDB file with
its wild type residue environment can be visualized directly
from the server using GLmol molecular viewer, and a Pymol
session file showing all the intra- and inter-molecular inter-
actions made by the wild type residue, calculated by Arpeg-
gio (29), is available for download and viewing in Pymol for
preparation of publication quality figures and to allow fur-
ther analysis.

The results page for predicting the effects of a list of muta-
tions is given in tabular format (Supplementary Figure S3).
The identification of the mutation, its relative residue sol-
vent accessibility, predicted change in binding affinity and
protein stability (both as ��G in kcal/mol) are displayed.
The results can be downloaded as a tab-separated file.

VALIDATION

Performance on cross validation

A series of experiments were carried out to assess the per-
formance of mCSM–NA in predicting effects of single point
missense mutations on protein–NA affinity for different nu-
cleic acid types. Figure 3 depicts the regression plots be-
tween experimental and predicted mutation effects. For the
complete training data set, mCSM–NA achieved a Pear-
son’s correlation of ρ = 0.7 (top-left graph). After 10% out-
lier removal, the correlation increases to ρ = 0.78.

Across all types of nucleic acid interactions, mCSM–NA
was able to accurately identify single point missense muta-
tions leading to increased or decreased nucleic acid binding
affinity (Supplementary Table S1). mCSM–NA performed
better for mutations on complexes involving single-stranded
nucleic acids (ssDNA and RNA) in comparison with ds-
DNA. For mutations on protein–RNA complexes (Figure
3, top-right graph), mCSM–NA achieves a Pearson’s cor-
relation of � = 0.75 and � = 0.85 for ssDNA (Figure 3,
bottom-left graph), while achieving � = 0.54 for dsDNA
(Figure 3, bottom-right graph), increasing to � = 0.61 after
10% outlier removal.

Blind tests

In order to proper evaluate the generalization of the predic-
tive model, two blind tests were carried out. On the first one,
composed by 79 missense mutations on protein–RNA com-
plexes, mCSM–NA achieve a Pearson’s correlation of � =
0.56 (Supplementary Figure S4). The method, as expected,
achieves a better correlation when assessing direct effects
on nucleic acid affinity. When considering mutations within
10 Å of the nucleic acid the correlation between experimen-
tal and predicted effects increases to � = 0.63, while when
only considering mutation directly in contact with the nu-
cleic acid (within 5 Å) the correlation increases to � = 0.68.

On the second blind test, mCSM–NA was capable of
differentiating between loss of function and respective res-
cue mutations on p53, showing a balanced performance
between mutations increasing and decreasing nucleic acid
affinity. The two loss of function mutations, R273C and
R273H, were predicted to significantly reduce affinity be-
tween protein and nucleic (predicted ��Gs of –1.220 and

–1.352 kcal/mol, respectively), while the rescue mutations
(T248R and S240R) were predicted to increase affinity (pre-
dicted ��Gs of 0.430 and 0.198 kcal/mol, respectively).

SUMMARY

We present here an updated version of mCSM–NA, which
relies upon graph-based signatures to predict the impact of
a single point missense mutation upon the nucleic acid bind-
ing affinity. mCSM–NA was trained on a newer and more
reliable version of the ProNIT database also incorporat-
ing on its signatures nucleic acids pharmacophores as well
as considering modeled reverse mutations to avoid biases
between increasing and decreasing affinity during training.
The method achieved a correlation of up to 0.7 during train-
ing and 0.68 on blind tests and was also able to differ-
entiate between loss-of-function and rescue mutations on
p53, showing its applicability in a real-world scenario. While
there is still room for improvement in terms of performance
on double-stranded nucleic acids, we believe mCSM–NA is
an invaluable tool for mutation prioritization to guide ex-
perimentation, shedding light into the mechanistic effect of
mutations on a molecular level through an intuitive and ef-
ficient web interface.

AVAILABILITY

The server is freely available via a user-friendly web inter-
face at: http://structure.bioc.cam.ac.uk/mcsm na.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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