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ABSTRACT

Determining the affinity of a ligand for a given protein
is a crucial component of drug development and un-
derstanding their biological effects. Predicting bind-
ing affinities is a challenging and difficult task, and
despite being regarded as poorly predictive, scor-
ing functions play an important role in the analy-
sis of molecular docking results. Here, we present
CSM-Lig (http://structure.bioc.cam.ac.uk/csm lig), a
web server tailored to predict the binding affinity
of a protein-small molecule complex, encompassing
both protein and small-molecule complementarity in
terms of shape and chemistry via graph-based struc-
tural signatures. CSM-Lig was trained and evalu-
ated on different releases of the PDBbind databases,
achieving a correlation of up to 0.86 on 10-fold cross
validation and 0.80 in blind tests, performing as well
as or better than other widely used methods. The
web server allows users to rapidly and automatically
predict binding affinities of collections of structures
and assess the interactions made. We believe CSM-
lig would be an invaluable tool for helping assess
docking poses, the effects of multiple mutations, in-
cluding insertions, deletions and alternative splicing
events, in protein-small molecule affinity, unravel-
ing important aspects that drive protein–compound
recognition.

INTRODUCTION

Interactions between small molecules and proteins mediate
many essential biological effects, and are a vital consider-
ation in the development of new drugs. Molecular docking
can be used not only to facilitate the drug development pro-
cess (1–3), but can provide useful insights into protein func-
tion prediction and other important problems (4–6).

The first stage of docking involves the generation of
poses to reflect the position, orientation and conformation
of a given molecule docked to the target, with current al-
gorithms having good predictive power. These poses are
then scored based upon a prediction of how tightly the lig-
and interacts with and is bound to the target. These scor-
ing functions have been developed around force-fields and
energy-based approaches (7–12), knowledge-based (13,14)
and empirical approaches (15), however it is widely recog-
nized that the inaccuracies of current scoring functions are
a major hurdle to achieving reliability in docking (16–18).
This might be, among other factors, due to certain simpli-
fications and assumptions while designing a scoring func-
tion, usually guided by the necessity of reducing computa-
tional load, which means that certain physical processes and
aspects that are relevant for understanding small-molecule
binding are not simulated, introducing some of this inaccu-
racy. Novel approaches for predicting protein–compound
affinities in a effective and scalable way are, therefore, of
great need.

We have successfully used a class of graph-based signa-
tures, called cutoff scanning matrix (CSM), to represent the
three-dimensional (3D) environment of proteins and small
ligands (19,20). These have been used successfully as evi-
dence to train accurate predictors of protein function and
structural classification (20), receptor-based ligand predic-
tion (21), the effects of mutation on stability and binding
to proteins, nucleic acids and ligands (22) and the pharma-
cokinetic properties of small molecules (23).

We show here that the CSM signatures can be used suc-
cessfully to accurately predict the binding affinity of small
molecules to proteins. By comparing its performance, we
show that CSM-Lig performs as well as or better than
several other widely used methods and scoring functions,
and is efficient, facilitating its use as a part of large scale
approaches. We also provide a freely accessible and user-
friendly web interface in http://structure.bioc.cam.ac.uk/
csm lig.
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Figure 1. CSM-Lig workflow. Based on a given protein-small molecule structure, CSM-Lig extracts the environment of the binding site from which struc-
tural signatures are derived, as well as physicochemical properties of the ligand. This information, together with experimentally measured protein small
molecule binding affinities from PDBind are used to train and test predictive models using machine learning.

Table 1. Comparative performance between CSM-Lig and similar methods and scoring functions on the PDBbind 2007 core set

Method/Scoring Function RP RS SD

CSM-Lig 0.751 0.761 1.617
RF-Score::Elem-v2 0.803 0.797 1.540
RF-Score::Elem-v1 0.776 0.762 1.580
X-Score::HMScore 0.644* 0.705 1.830**
DrugScoreCSD 0.569* 0.627* 1.960**
SYBYK::ChemScore 0.555* 0.585* 1.980**
DS::PLP1 0.545* 0.588* 2.000**
GOLD::ASP 0.534* 0.577* 2.020**
SYBYL::G-Score 0.492* 0.536* 2.080**
DS::LUDI3 0.487* 0.478* 2.090**
DS::LigScore2 0.464* 0.507* 2.120**
GlideScore-XP 0.457* 0.435* 2.140**
DS::PMF 0.445* 0.448* 2.140**
GOLD::ChemScore 0.441* 0.452* 2.150**
NHA 0.431* 0.517* 2.150**
SYBYL::D-Score 0.392* 0.447* 2.190**
IMP::RankScore 0.322* 0.348* 2.250**
DS::Jain 0.316* 0.346* 2.240*
GOLD::GoldScore 0.295* 0.322* 2.290**
SYBYL::PMF-Score 0.268* 0.273* 2.290**
SYBYL::F-Score 0.216* 0.243* 2.350**

Pearson (RP) and Spearman Correlations (RS), as well as Standard Deviation (SD) are given. Results from similar methods directly obtained from Balester
et al. (2014). Full references of the listed methods can be found on Table S2 of Supplementary Material. *P ≤ 0.05 compared to CSM-Lig by Fisher r −
to − z transformation. **P ≤ 0.05 compared to CSM-Lig by F-test.

MATERIALS AND METHODS

Graph-based structural signatures

The CSM algorithm defines a class of graph-based signa-
tures by modeling proteins/small molecule recognition as
graphs where atoms are seen as nodes and their interactions
as edges, and extracting distance patterns between its com-
ponents.

Atoms are labeled with eight pharmacophore types as in
(22), based on their physicochemical characteristics and a
cumulative distribution of distances between atoms (within

the protein-binding pocket and between the small molecule
and protein) per pharmacophore pair is generated.

Complementary small molecule properties were calcu-
lated using the Python RDKit library and are also included
in the signature. The complete list of used properties is avail-
able in Supplementary Material (Table S1).

These two sets of information encode the shape/chemical
composition of the receptor, the nature of the protein–
ligand interactions as well as the type of the ligand, which
are then used as evidence to train and test predictive meth-
ods with machine learning, using Gaussian Processes (24),
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Figure 2. Web server interface. The figure depicts the result page for a single protein-small molecule affinity prediction mode for CSM-Lig, which shows the
numerical binding affinity prediction as the −log10(KD |Ki) , an interactive GLMol session of the ligand binding location, a downloadable pymol session
file to explore the interactions made by the ligand and also a link for the predicted pharmacokinetic and toxicity properties of the ligand calculated by
pkCSM (23).

with available experimental data in the literature. Figure 1
shows a workflow of the CSM-Lig methodology.

Data sets

The PDBbind database (25) is a comprehensive collection
of experimentally measured affinities (Ki, KD and IC 50) for
different types of biomolecular complexes deposited in the
Protein Data Bank, including protein-small molecule bind-
ing data.

The database provides high-quality data sets specifically
designed for evaluating docking methods and scoring func-
tions, called ‘refined’ and ‘core’ sets. These were defined by a
set of general rules to include high-resolution structures, for
which Ki or KD are available for non-covalently bound lig-
ands. Further details on the criteria for filtering these data
sets can be found in (26,27).

The core set is composed by complexes derived from the
refined set clustered by sequence similarity (90%), where, for

each cluster three complexes are chosen: highest, lowest and
middle binding affinity, generating a very diverse, represen-
tative and non-redundant set with a wide spread of binding
affinities.

The complexes of the refined set that are not present in
the core set are used as training set, while the core set is
used as a blind test. Figure S1 of Supplementary Material
shows the histogram of affinities for each release and its
core set (used in this work as blind tests). CSM-Lig was ini-
tially built based on the PDBbind 2007 and 2013 releases,
which were used for its performance evaluation, and subse-
quently on the 2014 release. The CSM-Lig predictive model
was evaluated in 10-fold cross validation and using the core
sets of each release as blind tests. The training/test sets for
the PDBbind 2007, 2013 and 2014 releases used in this work
are composed by 1301/195, 2860/184 and 3167/184 com-
plexes, respectively.

In order to directly and impartially compare the perfor-
mance of the CSM-Lig methodology against other well es-
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Figure 3. Regression plot between experimental and predicted affinities by CSM-lig on the PDBbind 2014 release. The graph on the left-hand side depicts
the performance of CSM-lig over 10-fold cross validation, achieving a Pearson’s correlation of 0.88 (using 3167 protein–ligand complexes). The performance
in blind test for this release was 0.71 (composed by 184 protein–ligand complexes).

tablished approaches, the model built upon the 2007 release
was used to compare against a broad range of alternative
methods that have been built and tested using this release.
In order to assess and compare the predictive performance
of CSM-Lig with other methods we have used a set of evalu-
ation metrics including Pearson and Spearman correlation
coefficients (on the whole data set and across 90% of the
data) as well as the Standard Deviation. The significance
of the differences in correlations between CSM-Lig and al-
ternative approaches was determined by the Fisher r-to-z
transformation. In order to compare the standard devia-
tions of the different methods, the F-test was used. In both
cases a significance threshold of P ≤ 0.05 was employed.

WEB SERVER

We have implemented CSM-Lig via a user-friendly web-
server freely available at http://structure.bioc.cam.ac.uk/
csm lig (Figure S2 of Supplementary Material). The server
front-end was built using Bootstrap framework version 2.0,
while the back-end was built in Python via the Flask frame-
work (version 0.10.1), running on a Linux server. It allows
users to upload protein–ligand complexes (in PDB format)
or a compressed file of multiple protein–ligand complexes,
for which the predicted binding affinities will be calculated.
These could include different poses of the same complex,
different ligands or multiple different proteins. For multi-
ple complexes, the predicted affinities are shown in an in-
teractive table and can be downloaded as a tab-separated
file. In addition, a Pymol session file showing the interac-
tions made by the ligand within the structure (Figure S3 of
Supplementary Material) will be generated using Arpeggio
(Jubb H and Blundell TL, Unpublished Data), and made
available to download. For single predictions a WebGL in-
teractive molecule visualization of the uploaded complex
is also shown. Figure 2 depicts the result page for a single
complex prediction. No user information is retained on the
system after being uploaded by the user. Water molecules

present in the uploaded PDB files are removed prior to cal-
culation. As part of the PDBbind curated data set used in
this study, all other Hetatoms, including cofactors, are re-
moved from the structures. Since these were not present in
the training set for CSM-lig, the server automatically re-
moves them from the files.

RESULTS

CSM-Lig was first built and evaluated on the widely used
2007 and 2013 releases of PDBbind. For the two releases,
CSM-lig achieved a Pearson’s correlation coefficients of
0.82 and 0.86, Spearman correlations of 0.83 and 0.87 and
standard deviation of 0.94 and 0.87, respectively, on 10-fold
cross validation. Over the PDBbind core set, a blind test of
195 diverse complexes with binding affinities ranging from
millimolar to picomolar that has been used to benchmark
different approaches, the models showed strong Pearson’s
correlations of 0.75 and 0.80 (Spearman correlations of 0.76
and and 0.81) and with a small spread in errors between the
CSM-Lig predictions and experimentally measured affini-
ties (standard deviation of 1.617 and 1.440, respectively).
Figure S4 of Supplementary Material shows the regression
plots for the 2007 and 2013 releases. We have evaluated
whether the accuracy of the method was biased toward cer-
tain ligand properties, however, no significant correlation
has been identified (Figure S5 of Supplementary Material).

Comparing the performance of CSM-Lig built upon the
2007 PDBbind data set against previously benchmarked ap-
proaches that used this data set (28), we observed that CSM-
Lig performed as good or better than well established scor-
ing functions and predictors (Table 1). The Pearson and
Spearman correlations (0.751 and 0.761, respectively) and
the standard deviation (1.617) achieved by CSM-Lig on the
2007 data set were significantly better than all other meth-
ods, apart from RF-Score, which performed comparably
and was not statistically different.
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The CSM-Lig server was built and evaluated using the
latest release of PDBbind, 2014, and the updated core sets
as a blind test. CSM-lig achieved a Pearson’s correlation co-
efficient of 0.88 on 10-fold cross validation and 0.71 for the
core set, as a blind test (Spearman correlation of 0.89 and
0.70, respectively). Figure 3 shows a regression plot between
experimental and predicted affinities for the PDBbind 2014
release.

CONCLUSIONS

We present a new approach, CSM-Lig, for predicting
the binding affinity of a protein–small molecule complex.
CSM-Lig relies on graph-based signatures, was successfully
applied and evaluated in different predictive tasks and was
shown to outperform earlier methods. The results achieved
by CSM-Lig support the idea that the binding affinity of a
small molecule can be correlated with the atomic distance
patterns surrounding a bound ligand.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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