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Abstract

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is central to the regulation
of the DNA damage response and repair through nonhomologous end joining. The
structure has proved challenging due to its large size and multiple HEAT repeats. We
have recently reported crystals of selenomethionine-labeled DNA-PKcs complexed with
native KU80ct194 (KU80 residues 539–732) diffracting to 4.3Å resolution. The novel use
of crystals of selenomethionine-labeled protein expressed in HeLa cells has facilitated
the use of single anomalous X-ray scattering of this 4128 amino acid, multiple HEAT-
repeat structure. The monitoring of the selenomethionines in the anomalous-difference
density map has allowed the checking of the amino acid residue registration in the elec-
tron density, and the labeling of the Ku-C-terminal moiety with selenomethionine has
further allowed its identification in the structure of the complex with DNA-PKcs. The
crystal structure defines a stage on which many of the components assemble and reg-
ulate the kinase activity through modulating the conformation and allosteric regulation
of kinase activity.
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1. INTRODUCTION

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs;

Gell & Jackson, 1999), a giant single-chain protein of 4128 amino acids,

plays a central role in the regulation of DNA damage response and repair

through nonhomologous end joining (NHEJ) (Lieber, 2010; O’Driscoll &

Jeggo, 2006). It allows DNA double-strand breaks to be repaired promptly

when a sister chromatid is unavailable (Critchlow & Jackson, 1998), a

process used also in V(D)J recombination (Schatz, 2004). DNA-PKcs

autophosphorylation (Chen et al., 2005) and binding to the KU70/80

heterodimer (Walker, Corpina, & Goldberg, 2001) set the stage for ass-

embly of the main actors in NHEJ, which include Artemis, XRCC4,

XRCC4/DNA ligase IV, XLF, and PAXX (Lieber, 2010; Ochi et al.,

2015).

In the NHEJ process, DNA-PKcs with Ku70/Ku80 heterodimers reg-

ulate in space and time a complex series of events: synapsis, end processing,

and ligation (Lieber, 2010). During synapsis, Ku70/Ku80 heterodimers

assemble around and maintain proximity of broken DNA ends (Walker

et al., 2001). DNA-PKcs (PI3-kinase-related serine/threonine kinase) is rec-

ruited through interaction with Ku80 C-terminus (Gell & Jackson, 1999;

Singleton, Torres-Arzayus, Rottinghaus, Taccioli, & Jeggo, 1999). Two

DNA-PKcs complexes hold DNA ends close together (Spagnolo,

Rivera-Calzada, Pearl, & Llorca, 2006). DNA-PKcs phosphorylates itself

and various other proteins, including NHEJ components. End processing

involves nucleases such as Artemis, which exhibits 50 to 30 endonuclease
activity after activation by DNA-PKcs phosphorylation (Moshous et al.,

2001). The final ligation step is mediated by DNA ligase IV (LigIV) in a sta-

ble complex with dimeric XRCC4 (Grawunder et al., 1997). XLF/

Cernunnos also interacts with XRCC4 and enhances LigIV DNA ligation

(Buck et al., 2006).

Knowledge of the structures of individual molecules and their complexes

over space and time is required in order to understand this complex multi-

step system, the details of which will depend on the location of the DNA

damage and the nature of the DNA broken ends. Structures of many indi-

vidual components such as LigIV (Ochi et al., 2010, 2012) andXLF (Li et al.,

2008), as well as binary complexes of XLF–XRCC4 (Hammel et al., 2011;

Wu et al., 2011), LigIV–Artemis (Ochi, Gu, & Blundell, 2013), and

XRCC4–LigIV (Sibanda et al., 2001) have been reported. On the other
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hand, structural information on DNA-PKcs has been limited to our low-

resolution (6.6 Å) crystal structure (Sibanda, Chirgadze, & Blundell, 2010)

and to lower resolution cryo-EM structures (>13Å) (Chiu, Cary, Chen,

Peterson, & Stewart, 1998; Leuther, Hammarsten, Kornberg, & Chu,

1999; Rivera-Calzada, Maman, Spagnolo, Pearl, & Llorca, 2005;

Williams, Lee, Shi, Chen, & Stewart, 2008).

The structure of DNA-PKcs has proved challenging due to its large size

and multiple HEAT (Huntingtin, Elongation Factor 3, PP2 A, and TOR1)

repeats (Fig. 1). We have recently reported crystals of selenomethionine

(Se-Met)-labeled DNA-PKcs complexed with native KU80ct194 (KU80

residues 539–732) diffracting to 4.3 Å resolution (Sibanda, Chirgadze,

Ascher, & Blundell, 2017).We have exploited anomalous scattering through

substitution of Se-Met. Although this is an established technique it had not

been previously used to our knowledge with HeLa cell expression, in our

case leading to identification of 213 Se-Mets in ordered regions of the

two molecules of the asymmetric unit. A particularly useful aspect of this

approach in interpreting our 4.3 Å resolution electron density of DNA-PKcs

was to check sequence registration in a structure that has over 80 HEAT

repeats and other helix-turn-helix motifs in the 4128 amino acids in each

polypeptide chain in the asymmetric unit—the longest single-chain protein

yet deposited in the PDB. This aspect of the analysis reported in Science

(Sibanda et al., 2017) may be of value in other long single-chain molecules

of the PI3-kinase family and elsewhere in cell regulatory systems and is the

focus of this review.
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Fig. 1 Schematic of the overall sequence and structural units of DNA-PKcs. N-terminal in
blue, Circular Cradle in green, Head comprising FAT region in yellow, kinase in red, and
the FATC in light pink. The sequence of domains is compared to other PI3-K family mem-
bers, TRRAP (transformation/transcription domain-associated protein), mTOR (mamma-
lian target of rapamycin), ATM (ataxia-telangiectasia mutated), ATR (ATM and Rad3
related), SMG1 (human suppressor of morphogenesis in genitalia). Figure adapted from
fig. 1 published in Sibanda, B.L., Chirgadze, D.Y., Ascher, D.B., Blundell, T.L. (2017). DNA-PKcs
structure suggests an allosteric mechanism modulating DNA double-strand break repair.
Science, 355(6324), 520–524. [http://dx.doi.org/10.1126/science.aak9654].
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2. DEFINING THE STRUCTURE OF DNA-PKcs

DNA-PKcs was isolated from HeLa cells using a modification of the

purification protocol of Gell and Jackson (1999) as described in Sibanda et al.

(2017). DNA-PKcs was purified in the presence of 0.5–5mM EDTA to pre-

vent autophosphorylation. Heavy metal ion solutions, the best of which was

involved the dodeca-μ-bromo-hexatantalum cation (Ta6Br12
2+) as a bro-

mide salt, were used to form crystals for isomorphous replacement but

the resulting crystals were less well ordered. However, the use of

multiple-wavelength anomalous dispersion allowed determination of the

molecular structure of DNA-PKcs:Ku80ct194 complex at�6.6 Å resolution

(Sibanda et al., 2010). This has subsequently been improved (to 6.4 Å) using

multicrystal anomalous diffraction analysis for low-resolution macromolec-

ular phasing in a method pioneered by Hendrickson et al. (Liu, Zhang, &

Hendrickson, 2011). However, the presence of large variations in cell

parameters, due to soaking of Ta6Br12
2+, significantly reduced the number

of datasets that could be used.

3. EXPLOITING MULTIPLE SE-MET SUBSTITUTIONS

For this reason, we decided to explore the use of Se-Met-labeled

DNA-PKcs and Ku80ct194 proteins. In order to produce Se-Met-labeled

proteins in HeLa cells, we designed a modified expression protocol based

upon the procedure used in baculovirus-infected Sf21 cells to produce

recombinant Se-Met-labeled proteins (Bellizzi, Widom, Kemp, &

Clardy, 1999). HeLa cells were grown in a medium that was methionine

free, and this was used as a stock solution to grow for 4h a larger volume

inmethionine-free medium, in order to exhaust intracellular pools of methi-

onine. Cell pellets were formed by gentle spinning and resuspension in

methionine-free medium, before increasing volumes using methionine-free

medium. L-Se-Met was then introduced and cells grown to the normal cell

density, before harvesting and processing as for native cells. CR-UK pro-

vided the first small batch of these cells. The second batch was supplied

by Helmholtz-Zentrum who selected appropriate conditions to maximize

cell growth. The Se-Met protein was purified in the same way as the native

protein. We also produced Ku80ct194 substituted with Se-Met in Escherichia

coli cells (BL21 DE3) using approaches described earlier (Sibanda et al.,

2010). The crystals of complexes of the wildtype and Se-Met-substituted

148 Dimitri Y. Chirgadze et al.



proteins were produced by vapor-diffusion with hanging drops. Fourteen

Se-Met datasets were chosen from over one hundred collected from ESRF

beamline ID29/ID23 (Grenoble, France) that diffracted to around 4.5 Å res-

olution. The use of Se-Met-labeled DNA-PKcs complexed with wildtype

Ku80ct194 domain gave less variation in crystal dimensions and better dif-

fraction varying between 4.0 and 5.0 Å.

Selenium sites were identified using the anomalous difference maps using

phases calculated from the multicrystal Ta6Br12
2+ derivative datasets. Each

DNA-PKcs molecule of the model was placed in the asymmetric unit of

the multicrystal datasets using molecular replacement and the phases were

calculated in the PHENIX software suite (Adams et al., 2010). Areas in

the anomalous differencemaps with sigma levels above four were considered

to be possible selenium sites (Fig. 2). The best anomalous difference maps

were calculated from the datasets from 14 single crystals of the selenium sites

merged at 4.9 and 4.3 Å resolutions. Themulticrystal dataset at 4.3 Å allowed

a total of 172 of the expected 236 selenium sites to be identified, with good

consistency between the two molecules in the asymmetric unit (Fig. 3). The

electron-density maps were subjected to density modification including

twofold noncrystallographic symmetry averaging of the density for the

Fig. 2 Comparison of the anomalous difference maps calculated using: (A) a
multicrystal dataset that has only two single-crystal datasets and (B) a multicrystal
dataset that has 14 single-crystal datasets. The figure shows the increase in sigma level
of the areas of electron-density map (blue chicken-wire mesh) corresponding to the
selenium atom sites, indicated by white arrows. Both maps are contoured at 4σ level.
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two molecules in the asymmetric unit using the SOLVE/RESOLVE rou-

tine of PHENIX software suite (Adams et al., 2010).

The newmaps produced showed helical features including electron den-

sity corresponding to amino acid side chains. An example of an experimental

electron-density map from this multicrystal dataset 6 at 4.3 Å resolution is

shown in Fig. 4. The maps revealed more helices and the density in the loop

regions of HEAT repeats, making it possible to trace the chain from the N-

to the C-terminus. The model was manually rebuilt, corrected, and

extended further; the resulting phases were used in a recalculation of the

anomalous difference maps, which allowed identification of further sele-

nium sites. Iteration of the process allowed 213 sites representing 90.0%

of the possible number of sites to be identified. The structures of the two

molecules were further refined exploiting rigid body and translation/libra-

tion/screw refinement, using the PHENIX software suite (Adams et al.,

2010). Side-chains were modeled in an iterative process using Andante

(Smith, Lovell, Burke, Montalvao, & Blundell, 2007) and Arpeggio (Jubb

et al., 2017). The final R and Rfree values are 38.6% and 43.7%, respectively.

Structure evaluation and validation were performed using VADAR (Willard

et al., 2003) for analysis of coordinates, packing, H-bonds, secondary

Fig. 3 The positions of selenium sites in the two molecules of DNA-PKcs of the asym-
metric unit. The molecules of DNA-PKcs are shown as ribbons in rainbow color, from
N-terminus—blue to C-terminus—red. The Se atoms are shown as either gray or
magenta spheres. A total of 213 selenium sites of the 236 possible sites can be identified.
Molecule A (A) has 109 sites, while molecule B (B) has 104. Superposition of molecules
A and B is shown in (C) in order to demonstrate the correlation between the sites
observed in both molecules. There are 104 pairs, comprising 208 sites of the two mol-
ecules in the asymmetric unit. Figure adapted from fig. S8, published in Sibanda, B.L.,
Chirgadze, D.Y., Ascher, D.B., Blundell, T.L. (2017). DNA-PKcs structure suggests an allosteric
mechanism modulating DNA double-strand break repair. Science, 355(6324), 520–524.
[http://dx.doi.org/10.1126/science.aak9654].
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structure and geometry, Verify_3D (Bowie, Luthy, & Eisenberg, 1991) and

Harmony (http://caps.ncbs.res.in/harmony/) to look at the compatibility

between the sequence and 3D structure.

The Ku C-terminal region was identified from an anomalous difference

map calculated using the cocrystals with the Se-Met derivatized Ku80ct194.

These showed only two areas where the density level was more than 3.5σ
consistent between the twomolecules ofDNA-PKcs present in the asymmet-

ric unit. Thesewere in unexplained electron density, locating theKu-binding

site A near α-helices 2012–2024 and 2059–2066. The anomalous difference

map, taken together with the refined DNA-PKcs model, indicated that

the Se-Met identified from the map is that in the C-terminal region of Ku

that folds as a helix onto the DNA-PKcs (Sibanda et al., 2017) and that the

globular helical region identified earlier by NMR is not ordered in the

complex.

4. USING SE-MET SITES TO CHECK SEQUENCE
REGISTRATION

The positions of selenium atoms were then used to identify methio-

nine residues and to check the registration with the sequence. Eight

Fig. 4 Examples of electron-density maps in the vicinity of some of the Se-Met residues:
(A) Experimental electron-density map obtained using the SAD technique with the
multicrystal dataset at 4.3Å resolution. The map is contoured at 1.0σ level. The positions
of selenium atoms are shown as white spheres and marked by arrows and residue num-
bers. The C-alpha trace of α-helices of DNA-PKcs is shown, while in (B) the side-chains of
the corresponding area are shown. Figure adapted from fig. S9, published in Sibanda, B.L.,
Chirgadze, D.Y., Ascher, D.B., Blundell, T.L. (2017). DNA-PKcs structure suggests an allosteric
mechanism modulating DNA double-strand break repair. Science, 355(6324), 520–524.
[http://dx.doi.org/10.1126/science.aak9654].
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selenium sites were in disordered regions of the chain lacking good electron

density. The even spacing of the Se-Met residues in the sequence allowed

them to map the overall shape of the molecule (Figs. 3 and 4).

5. DNA-PKcs AS A STAGE FOR THE ASSEMBLY OF THE
ACTORS IN NHEJ

The analysis of the structure of DNA-PKcs shows that it is assembled

as three well defined, large structural units, within which motifs resembling

HEAT repeats give rise to supersecondary structures with continuous

hydrophobic cores (Fig. 5) (Sibanda et al., 2017). The structural units com-

prise the N-terminal region (38 α-helices, residues 1–892, four super-

secondary structures: N1–N4), the Circular Cradle (85 α-helices, residues
893–2801; five supersecondary structures: CC1–CC5), and the

C-terminal Head (64 α-helices, residues 2802–4128, FAT, FRB, kinase,

and FATC).

The N-terminal region and the CC region of DNA-PKcs in particular

are composed predominantly of HEAT repeats (Fig. 6). The regular repet-

itive nature of these HEAT-repeat supersecondary structures leads to some

repetitive nature in the sequence, making sequence registration at medium

to low resolution very difficult. The positioning of the Se-Met groups across

these helices provided the necessary information to define their sequence

register.

Although the findings of Weterings et al. (2009) indicate that the

C-terminus of KU80 is not absolutely required for activation of DNA-PKcs,

our structure indicates that it likely facilitates DNA-PKcs recruitment.

Comparison with the cryo-EMmaps of the DNA-PKcs–Ku70/80 complex

(Spagnolo et al., 2006) reveals that density for Ku70/80 complex is located

close to CC4 and N1 (Fig. 5). N1–N3 of DNA-PKcs is found to mediate

DNA binding (Douglas et al., 2007; Hammel et al., 2010; Meek, Lees-

Miller, & Modesti, 2012; Spagnolo et al., 2006; Villarreal & Stewart,

2014; Williams et al., 2008). This region, together with the Circular Cradle,

forms a ring at the base of the molecule through which KU70/80 may pre-

sent DNA for repair, and binding of Ku or DNA likely activates the allosteric

mechanism needed for the N-terminal and Circular Cradle to communicate

with the kinase in the Head (Sibanda et al., 2017).

In NHEJ, appropriate spatial colocalization of components is assured by

colocation on DNA-PKcs, which may be considered as a stage where the

main actors gather and engage.
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Fig. 5 The overall structure of DNA-PKcs. As in Fig. 1 structural units of DNA-PKcs are colored: N-terminal in blue, Circular Cradle in green, Head
comprising FAT region in yellow, kinase in red, and the FATC in light pink. Also shown are the Forehead in light green and FRB (FKBP12-
rapamycin-binding). Figure adapted from fig. 1 published in Sibanda, B.L., Chirgadze, D.Y., Ascher, D.B., Blundell, T.L. (2017). DNA-PKcs structure
suggests an allosteric mechanism modulating DNA double-strand break repair. Science, 355(6324), 520–524. [http://dx.doi.org/10.1126/science.
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Apart from ensuring correct colocation at the appropriate time, we have

argued that the complexity of such assemblies is in itself selectively advan-

tageous (Blaszczyk, Harmer, Chirgadze, Ascher, & Blundell, 2015; Blundell

et al., 2000; Bolanos-Garcia et al., 2012). Binary interactions in regulatory or

signaling systems would occur opportunistically in the crowded environ-

ment of the cell, giving rise to noise in the system. However, cooperative

formation of multiprotein systems would be less likely to form by chance,

especially if they have many components and ordered-assembly

mechanisms.

Fig. 6 Secondary structure assignment of the HEAT repeat rich regions—the N-terminal
and Circular Cradle structural units of the DNA-PKcs crystal structure. The sequence is
colored according to the schematic in Fig. 1. Here, α-helices are shown in red, loops in
blue, and sheets in green. Residues not built into the electron density are shown by an X,
and the location of Se-Met by bold red X’s.
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