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Abstract

Changes in protein sequence can have dramatic effects on how proteins fold, their stability and dynamics. Over the last 20 years,
pioneering methods have been developed to try to estimate the effects of missense mutations on protein stability, leveraging growing
availability of protein 3D structures. These, however, have been developed and validated using experimentally derived structures and
biophysical measurements. A large proportion of protein structures remain to be experimentally elucidated and, while many studies
have based their conclusions on predictions made using homology models, there has been no systematic evaluation of the reliability
of these tools in the absence of experimental structural data. We have, therefore, systematically investigated the performance and
robustness of ten widely used structural methods when presented with homology models built using templates at a range of sequence
identity levels (from 15% to 95%) and contrasted performance with sequence-based tools, as a baseline. We found there is indeed
performance deterioration on homology models built using templates with sequence identity below 40%, where sequence-based tools
might become preferable. This was most marked for mutations in solvent exposed residues and stabilizing mutations. As structure
prediction tools improve, the reliability of these predictors is expected to follow, however we strongly suggest that these factors should
be taken into consideration when interpreting results from structure-based predictors of mutation effects on protein stability.

Keywords: AlphaFold2, mutation effects on protein stability, homology modelling, performance evaluation

Introduction

Proteins are considered metastable, with their stability
intricately linked to their structure and function. Small
changes in the protein sequence can lead to large effects
on overall protein stability and dynamics, and have been
associated with a range of genetic diseases [1–15] and
even drug resistance [16–33]. The ability to accurately
predict these effects has broad potential applications,
not only in interpreting the molecular mechanisms of
novel variants [34–36], but also in the industry, where the
design of more stable enzymes is of significant impor-
tance [37–40].

Experimental approaches to measuring the impact
of changes in protein sequence to protein stability, for
example thermal melts and urea denaturation, have
focussed on measuring the change in Gibbs Free Energy
(��G, expressed in Kcal/mol) of folding by comparing
the stability of the purified wild-type and mutant
proteins [41]. Although these approaches provide direct
experimental insight into protein stability, they are costly

and time consuming. This makes it prohibitive to test the
effects of every possible mutation and combination of
mutations experimentally, and hence, has driven interest
in computational approaches to guide more rational
mutation analysis and design.

Over the last 20 years, a range of computational
approaches have been developed for large-scale studies
of the effects of mutations on protein thermodynamics
stability. Although they have used a range of differ-
ent approaches, including statistical [42,43], machine
learning [44–54] and energy calculations [55–57], the
vast majority have relied upon experimentally solved
3D structures and biophysical measurements in their
development [58].

Determination of protein structures, however, is not
always straightforward, with a significant number of
protein structures yet to be determined experimentally.
In the absence of experimental information, homology
modelling [59,60] has been widely used to build a
3D model of a protein from its amino acid sequence

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbac025/6533502 by U

niversity of M
elbourne user on 23 February 2022

https://orcid.org/0000-0003-2948-2413
https://orcid.org/0000-0002-3004-2119


2 | Pan et al.

Figure 1. Analysis workflow for assessing the performance of mutation effect predictors using homology models in different sequence identity ranges.

based on an alignment with a similar protein with
known structure, or template. In general, the higher the
sequence identity to the template, the more reliable
the homology model is likely to be [61]. Although
homology models have been widely used to guide
interpretation of the effects of mutations using these
structure-based tools, it has not been well-established
how inaccuracies introduced during the homology
modelling affect their reliability and accuracy. In addition
to template-based approaches for protein structure
prediction, more recently, the development of AlphaFold2
[62] has revolutionized the field with a significant
increase in performance, promising to bridge the gap in
protein 3D information with high-quality models [63].
Understanding how the use of these protein models
affect predictive performance is important to ensure that
they are used and interpreted appropriately.

To address this, we have systematically evaluated the
effect of homology models on the performance of ten
publicly available computational tools for predicting the
effects of missense mutations on protein stability.

Materials and methods
The methodology for the present work can be divided
into four main steps (depicted in Figure 1): (i) data acqui-
sition, including collecting experimentally solved protein
structures and effects of missense mutation on protein
stability; (ii) generating homology models for different
identity ranges; (iii) predicting effects of mutations using
generated models for a range of available tools; and (iv)
comparative analysis of predictive tools.

Mutation dataset linking effects on stability to
experimental protein structures
Over the years, considerable efforts have been dedicated
to extracting and manually curating experimentally
derived protein thermodynamics information from the
literature, including the effects of mutations on stability
[64–67] and interactions [68,69], and linking these to
high-resolution protein structures. The dataset used in
this work was derived from ProTherm [64], and links
experimentally measured thermodynamics effects of
missense mutations to a diverse set of protein structures.
A subset of ProTherm, the S2648 dataset [70], was
selected and is composed of 2648 single point missense

mutations across 132 unique globular proteins, with
a range of mutation effects (Supplementary Figure S1)
expressed as the difference in Gibbs Free Energy (��G)
between wild-type (�GWT) and mutant (�GMT) as follows:

��G = �GWT − �GMT

Where positive values denote mutations leading to
increased protein stability, while negative values denote
destabilizing mutations. Mutations on S2648 are mapped
to protein structures solved by either Crystallography
with X-ray diffraction or nuclear magnetic resonance
(NMR), with 77% of mutations leading to a decrease in
protein stability, as observed previously and in other
datasets [49,71]. This dataset has been extensively used
over the past decade as a benchmark for computational
method development aiming to assess mutation effects
on stability [44,46,47,70] and, therefore, has been exten-
sively curated and manually inspected. Although this
dataset has been used for development purposes before
by different methods, the overarching goal of this work is
not to assess global performance of the available meth-
ods, but rather evaluate how they cope in the absence of
experimental structures, when presented with homology
models built at different identity thresholds, and how
this would impact their relative performance.

Generating homology models at varied identity
levels
In homology modelling, it is well-established that there
is a correlation between template identity level and the
reliability and quality of models generated [61], despite
recent advances in the field pushing the boundaries of
both de novo [72] and template-free modelling [73]. In
order to assess the robustness of currently available
predictive methods to input uncertainty and noise, we
compared their performance presenting them with the
same mutation dataset mapped to homology models
built using templates at different sequence identity lev-
els. To achieve this, template candidates for the 132
proteins contained in the S2648 dataset were divided into
eight groups, with target-template sequence identities
in the following ranges: 15–25%, 25–35%, 35–45%, 45–
55%, 55–65%, 65–75%, 75–85% and 85–95%. In addition,
performance on the experimental structures was used as
upper baseline (e.g. 100% identity dataset). A summary of
the developed datasets is shown in Table 1.
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Homology modelling was performed using MODELLER
version 9.24 [74]. Potential templates were searched
in the pdb_95.bin database (a cluster at 95% sequence
identity in MODELLER) using blastp with the target
sequence as input. Target-template alignments were
manually inspected and a representative template
selected per protein/per identity range based on the
following criteria:

1. Target-template coverage >75%;
2. Template structure determined by crystallography

with X-ray diffraction;
3. Best quality models were selected based on DOPE

score.

Models generated were submitted to FoldX [55] for
minimization and refinement. The structural similarity
between homology models and protein experimental
structures was then inspected using the root mean
square deviation (RMSD) calculated by the align and
rms_cur command in Pymol [75–77] and TM-score
calculated by TM-align [78]. The full list of templates and
targets used is available as Supplementary Materials.

Generating high-quality protein models via
AlphaFold2
The AlphaFold2 program developed by DeepMind domi-
nated the 14th Critical Assessment of protein Structure
Prediction (CASP14) [79], representing a significant
advance in the field. The performance of predictive
methods on the protein models generated via AlphaFold2
were also used as a benchmark in this study. The Uniprot
sequences of the proteins in the S2648 dataset were used
for construction of AlphaFold2 models. The installation
of AlphaFold2 was introduced in their manuscript and
is available in their github page. As suggested, the same
database version —max_template_date = 2020-05-14 was
used in this work. Model quality was recorded in output
files and determined by pLDDT values [80].

Methods to predict effects of mutations on
protein stability
Increased availability of high-quality mutation data and
advances in computational approaches, particularly in
machine learning, have supported and enabled the devel-
opment of a range of computational tools aiming to
understand how missense mutations affect protein fold-
ing and stability, which have been fundamental to unrav-
elling molecular mechanisms of mutations leading to
protein malfunction and diseases [81], also playing a
role in cancer [82] and cancer risk [83], as well as drug
resistance [17,18,84]. These developed methods can be
divided into three main groups, without loss of gener-
ality: (i) tools based on energy function and dynamics
simulations; (ii) knowledge-based and statistical; and (iii)
machine learning methods. For this study, a represen-
tative set of ten structure-based methods was selected
for assessment, including representatives of these three
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groups, for which either standalone packages or web-
server interfaces were publicly available. These include:

Energy-based and dynamics

1. FoldX [55] is a well-established tool that uses empiri-
cal force fields and energy term calculations to esti-
mate the effects of mutations on protein stability.

2. ENCoM [56] uses a coarse-grained normal mode
analysis (NMA) approach to simulate effects of
mutations on the conformational repertoire, and
therefore dynamics, of protein structures.

Knowledge-based and statistical

1. SDM [42] adopts environment-specific substitution
tables to generate a structure-based score for muta-
tion propensity and effects, considering structurally
aligned protein families.

2. DDGun [85] is a prediction method using a lin-
ear combination of sequence and structural fea-
tures.

Machine learning

1. MAESTRO [46] uses statistical scoring functions and
a multi-agent system to predict effects of mutations
on protein stability.

2. I-Mutant 2.0 [51] is a Support Vector Machine (SVM)-
based method to predict the change of protein sta-
bility upon mutation.

3. mCSM-Stability [44] uses the concept of graph-based
signature to describe residue environments in pro-
tein structures and then train and test predictive
models via supervised learning.

4. DUET [45] is an integrated computational approach
to predict the ��G values upon mutation that com-
bines the prediction power of mCSM-Stability and
SDM.

5. DynaMut1 [47] is a method that combines the graph-
based signatures and NMA to give a consensus pre-
diction of ��G values upon mutation via supervised
learning.

6. DynaMut2 [50] is an optimized version that also
considers the global environment of the wild-type
residues to estimate the conformational change
upon residue substitution and train supervised
learning methods.

We have also included the following currently avail-
able sequence-based methods as a baseline for com-
parison purposes and assess potential situations where
performance deterioration by using homology models
would suggest that sequence-based methods would be
more adequate:

1. SAAFEC-SEQ [86] is a sequence-based method that
applies a gradient boosting decision tree algorithm
on protein sequence features descriptors, different

physico-chemical factors and evolutionary knowl-
edge to make predictions.

2. MUpro [87] is a method that considers a small win-
dow size on the neighbour of targeted residue to
train a SVM-based predictive model.

3. I-Mutant 2.0 [51] is a sequence-based version of the
I-Mutant package using SVM to predict mutation
effects on protein stability.

4. DDGun-Seq [85] is a sequence-based version of
DDGun using evolutionary information to predict
��G values upon variants.

All the predictions were run at the same experimental
pH and temperature as described in the S2648 dataset
(available as Supplementary Materials), when these
parameters were available. All the prediction tools were
otherwise run with default settings. The nr database
[88] was used for predictions of SAAFEC-SEQ. A detailed
introduction of all methods used in this work is available
in Table S1, including the implementation, relevant
datasets and sources.

Mutations and homology models obtained in previous
steps were systematically used and provided to the meth-
ods to predict effects of mutation on protein stability,
with the experimental effect used as ground truth. Per-
formance metrics were calculated including root mean
square error (RMSE) and Pearson’s Correlation Coeffi-
cient (R), for regression purposes and Matthew’s Corre-
lation Coefficient (MCC) and F1-score, for classification
purposes. A description of metrics used can be found in
Supplementary Materials.

Characterizing method performance based on
structural and sequence properties
To better characterize the performance of different
methods, for different identity ranges, the mutation
dataset was further divided for analysis purposes. This
involved generating subsets of mutations based on
structure- and sequence-based properties as follows:

Structure-based properties

Mutation subsets were divided for analysis purposes
based on:

i. Residue relative solvent accessibility (RSA—buried
versus exposed residues), calculated using Biopython
[89];

ii. Residue depth, calculated by the msms program in
Biopython;

iii. Secondary structure type (SST), obtained from the
DSSP algorithm [90,91]. Four main SST, namely
alpha helix, beta sheet, turn and random coil, were
considered in this work;

iv. CATH structural classification of proteins [92].
Three main types of structure classes, namely
mainly alpha, mainly beta, and mixed alpha/beta,
were considered in this work.
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Sequence-based properties

Mutation groups were further obtained by grouping
residues based on:

i. Polarity, where wild-type residues are assigned to
either polar (referred as P) including Q, N, S, T, R,
H, K, D, E and C or hydrophobic/apolar (referred
as H) including A, L, M, I, V, F, Y and W. Glycine
residues were considered as a separate class. No
mutations on Proline residues were identified in the
S2648 dataset;

ii. Residue volume difference [93,94], classified based
on the difference between wild-type and mutant
residue volumes. Three groups were constructed,
Large to Small (L2S), Same to Same (S2S) and Small
to Large (S2L). Only when the difference was greater
or equal to 30 Å3 would the mutation be inserted
into the L2S or S2L groups [71];

iii. Stability of mutations was classified based on
the experimentally measured effects. These were
labelled as either stabilizing or destabilizing (based
on the ��G sign).

Results
Property distribution of the homology model
datasets
Eight homology model datasets at different identity lev-
els, namely Iden15–25, Iden25–35, Iden35–45, Iden45–55,
Iden55–65, Iden65–75, Iden75–85 and Iden85–95, were
built and presented no significant differences in dis-
tributions of ��G values (Figure 2A and Table S2, P-
value = 0.38 via one-way ANOVA) when compared with
the experimental dataset (Iden100), with significance
decreasing with identity levels. The proportion of desta-
bilizing (��G < 0) and stabilizing mutations (��G ≥ 0)
in these datasets were consistent, with averages of 26%
(sd = 0.03) and 74% (sd = 0.03), respectively, reflecting a
natural bias towards detabilizing mutations in the S2648
dataset (Figure S1).

Distribution of structure-based properties

All datasets presented similar RSA distributions (Figure 2B).
A general cutoff of 20% was used to define whether
a residue was buried (53%) or exposed (47%) (Table 1),
consistent with previous studies [95–97]. Residue depth
distributions were also similar, ranging from 1.7 to 6.6 Å.
In this study, we used 2.2 Å as a cutoff to distinguish
deep (54%) and shallow (46%) residues, to achieve a
relatively balanced split (Table 1). The distribution of
mutations per SST is listed in Table 1. For all homology
model datasets, two-thirds of mutations were located in
alpha helix (32%) and beta sheet (32%) structures, with
a smaller proportion of mutations in turns (8%), random
coil (17%) or other secondary structures (11%). When
looking at the distribution of protein structural classes,
based on the CATH database, the majority of mutations
were in proteins belonging to the alpha/beta class (45%),
followed by mainly alpha (27%) and mainly beta (26%),

with a small fraction of proteins (2%) labelled as ‘few
secondary structures’ in CATH (Table 1).

Distribution of sequence-based properties

The distribution of mutation types showed that most
mutations fall into the apolar-to-apolar (HH: 37%) cate-
gory, followed by polar-to-polar (PP: 20%), and polar-to-
apolar (PH: 20%) categories (Figure 2C). Eight percent of
mutations were to Glycine and 27% of mutations to Ala-
nine, as a reflection of experimental mutagenesis efforts.
Most mutations involved wild-type and mutant residues
of similar volumes (S2S: 49%), with smaller proportions
involving the introduction of smaller (L2S: 35%) or larger
residues (S2L: 16%) (Table 1).

Distribution of RMSD and TM-score

We observed that higher sequence identities led in
general to lower RMSDs and higher TM-score (Table 2,
Figure 2D and E), consistent with previous analyses [61].
When sequence identity reaches around 40%, almost
two-thirds of the models in the dataset obtained RMSD of
around 1 Å and TM-score of above 0.75. Only one model in
the dataset Iden55–65 had a high RMSD value of around
21 Å. However, this has been kept to mimic the real-world
scenario of application of homology models.

Distribution of target-template identity, coverage
and quality of models

Target-template identity distributions for each dataset
are depicted in Supplementary Figure S2A, with average
values consistently in the middle of the range. Most
models presented target-template coverage higher than
85% (Supplementary Figure S2B), suggesting that the
target-template coverage was less limiting than target-
template identity when electing a template for homology
modelling. The quality of all homology models shared
similar distribution in each identity range (Supplemen-
tary Figure S2C).

Predictive performance trends on homology
model datasets
Overall performance

We observed that, in general, predictive performance of
the evaluated methods increases with target-template
identity, which was consistent for both regression and
classification tasks (Figure 3 and Supplementary Figure
S3). Alternatively, we observed a consistent performance
deterioration on the task of predicting mutation effects
on stability for all structure-based methods, particularly
in machine learning based methods and FoldX, when
the sequence identity of the homology modelling tem-
plate dropped. Interestingly, the predictive performance
of most methods studied on AlphaFold2 models is close
to those obtained on experimental structures (Figure 3B).

Based on the performance trend shown in Figure 3A, a
proposed sequence identity cutoff for DynaMut2, DUET
and mCSM-Stability was around 40%. The regression per-
formances of these three prediction methods presented
a sharp decreasing trend when the sequence identity
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Figure 2. Distribution of (A) experimental ��G values, (B) relative solvent accessibility (RSA), (C) mutation types, (D) root mean square deviation (RMSD)
and (E) TM-score between homology models and experimental structures in eight homology model datasets of different identity levels. The RSA cutoff
to define buried or exposed residues was 20% and shown as a blue dashed line in (B).

Table 2. Template description for homology model datasets.

Identity level (%) Mean RMSD (Å) Mean TM-score Mean actual identity
(%)

Mean coverage (%) Mean template
resolution (Å)

15–25 4.90 0.75 21.19 86.49 1.91
25–35 3.68 0.79 30.73 88.13 1.93
35–45 2.50 0.82 39.86 91.01 1.85
45–55 2.19 0.86 49.11 92.76 1.87
55–65 2.29 0.86 59.95 94.51 1.78
65–75 1.89 0.90 69.43 96.48 1.74
75–85 1.86 0.87 79.74 95.96 1.92
85–95 1.74 0.89 89.82 95.11 1.78

was less than 40% (with R values dropping from 0.63
to 0.53 and RMSE increasing from 1.22 to 1.34 Kcal/-
mol), while keeping relatively stable performance for
identity levels higher than 40%. Interestingly, below 40%
identity the performance of structure-based methods
deteriorated as low as that of sequence-based methods,
indicating that the latter would be recommended in
the absence of higher identity templates for homol-
ogy modelling. The same result can be observed for
classification tasks (MCC = 0.21–0.36, F1-score = 0.32–
0.45). The SAAFEC-SEQ, as a sequence-based benchmark,
showed the highest correlation among all methods
(R = 0.89).

DynaMut1, Maestro and I-Mutant presented a similar
behaviour when sequence identity reaches the 40%
mark, with R values decreasing from 0.62 to 0.46 and

RMSE increasing from 1.21 to 1.44 Kcal/mol (Figure 3
and Supplementary Figure S3). The performance of these
three methods also deteriorated below the baseline from
sequence-based methods when identity is under this
threshold. FoldX had the largest degree of variation
on performance when sequence identity changes and
did not show robust performance for models built with
templates with sequence identity below 70%. As for the
performance trends of DDGun, SDM and ENCoM, there
was no clear sequence identity cutoff for these three
methods, with performance varying substantially. Only
DDGun exceeded the baseline performance of sequence-
based methods. To remove the bias caused by outliers
and homologs in the original S2648 dataset, a detailed
performance report is showcased in Supplementary
Table S3. Similar identity cutoffs for machine learning
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Figure 3. Overall performance trends based on Pearson’s correlation coef-
ficient (R) of ten methods predicting mutation effects on protein stability,
namely DDGun (brown), DUET (red), DynaMut1 (pink), DynaMut2 (green),
ENCoM (orange), FoldX (blue), I-Mutant 2.0 (light blue), MAESTRO (purple),
mCSM-Stability (yellow) and SDM (cyan). The R values and their trends on
homology models are represented in dots and lines, respectively. A verti-
cal long-dashed line indicates the proposed identity cutoff for homology
modelling, whereas the horizontal lines are the baseline performance of
four sequence-based methods, namely SAAFEC-SEQ (dotted), MUpro (dot-
dashed), I-Mutant (dashed) and DDGun (long-dashed).

methods were determined and no significant difference
between the results before and after removing homolog
structures was observed.

Performance trends based on structural
properties
We further assessed how the performance of different
predictive methods vary based on the structural proper-
ties of proteins and residues involved. In this study, we
considered buried versus exposed residues, residues in
different secondary structures and in proteins of differ-
ent structural classes derived from CATH.

Exposed versus buried residues

The assessed methods tended to perform better on
buried than exposed residues. When sequence identity
was lower than 40%, I-Mutant, DUET, mCSM-Stability
and DynaMut2 presented a larger drop in performance
on buried residues (R dropped from 0.67 to 0.55)
(Figure 4A) than on exposed residues (R dropped from
0.48 to 0.45), even though overall performance on the
former mutation group was still higher. Classification
performance on buried residues for these methods
showed a sharp reduction when sequence identity
was less than 50% (MCC dropped from 0.41 to 0.20)
(Supplementary Figure S4). Among these four methods,
I-Mutant showed the best classification performance on
exposed mutations (MCC up to 0.55), whereas most could
not reach the baseline performance of sequence-based
methods. This trend was also observed for the remaining
methods. When it comes to the statistical/energy

function methods, only FoldX showed large performance
deterioration when sequence identity dropped.

Shallow versus deep residues

For globular proteins, residue depth can distinguish
between buried residues just under the surface and
those near the protein core region [98–100]. As expected,
prediction performance trends on deep and shallow
residues correlated with buried and exposed residues
(Figure 4A and B). DynaMut2, mCSM-Stability, DUET and
I-Mutant shared a similar trend, with performance
deteriorating below identity cutoff of 40% and 50%
for deep and shallow residue mutations, respectively
(consistent with F1-score for classification tasks—
Supplementary Figure S5). FoldX shows the larger
performance variation below 70% identity for both deep
and shallow mutations (Figure 4B). Little performance
variation until 40% identity was observed for DynaMut1,
Maestro, SDM, ENCoM and DDGun.

Secondary structure

In general, methods performed better on structured
regions (alpha helices, beta sheets and turns) than on
unstructured ones (random coil). DynaMut2, mCSM-
Stability and DUET shared similar performance trends,
performing well up to 40% identity for mutations on
alpha helix and beta sheet and 50% for turn and random
coil (Figure 4C and S6), outperforming sequence-based
methods. Similar performance trends were observed
in DynaMut1, Maestro, as well as I-Mutant, revealing
lower sequence identity demands on alpha helix and
beta sheet, which were higher for FoldX. I-Mutant
had the highest performance deterioration in turn
conformations (R dropped from 0.62 to 0.36, Figure 4C).
Similar identity cutoff on alpha helices and beta sheets
can be observed in classification tasks, with MCC ranging
from 0.27 to 0.47 (Figure S6). SDM, ENCoM and DDGun
showed no distinguishable trend based on secondary
structure.

CATH classification

When assessing performance based on protein structural
classification, mainly alpha and mixed alpha/beta
proteins presented clearer trends (Figure 4D), with a drop
in performance below 40% identity. DynaMut2, mCSM-
Stability and DUET showed a steadier performance on
mainly alpha proteins, with larger drops for mainly
beta and mixed alpha/beta. These were consistent
for machine learning based methods and FoldX, with
I-Mutant showing the most significant performance
deterioration on classification tasks (Figure S7) and no
discernible trend for ENCoM and DDGun. There was
no obvious identity cutoff for DynaMut1 and Maestro
in the mainly alpha group (Figure 4D). Performance
deterioration was more pronounced in mainly beta and
mixed alpha/beta proteins.
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Figure 4. Performance trends based on Pearson’s correlation coefficient (R) of ten methods with mutations grouped based on four structure-based
properties, namely (A) relative solvent accessibility (RSA), (B) residue depth, (C) secondary structure types and (D) structural class based on CATH. The
performance trends of two main types of methods, namely machine learning based (ML) and Statistical/Energy function based (Non-ML), were displayed
respectively. The RSA cutoff of 20% was used to determine buried or exposed residues. The residue depth cutoff of 2.2 Å was used to determine deep or
shallow residues. Four secondary structure types, namely alpha helix, beta sheet, turn and random coil, were considered in this study. Three structural
classifications, namely mainly alpha, mainly beta and mixed alpha/beta, were analysed.

Performance trends based on sequence-based
properties
For sequence-based properties, this study focused on
mutations on different amino acid residue types, residue
volume differences, and the direction of stability change
upon mutation.

Mutation types
When assessing performance trends based on mutation
types (to and from polar and apolar residues), inter-
group mutations (HP and PH) presented, in general,
a more pronounced performance deterioration below
40–50%, particularly for the PH type for all methods
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Figure 5. Performance trends based on Pearson’s correlation coefficient (R) of ten methods with mutations grouped based on four sequence-based
properties, namely (A) mutation type based on the change of polarity, (B) change of residue volume, (C) mutations related to Glycine and (D) mutation
effects on protein stability.

(Figure 5A and S8). Only a small performance deteriora-
tion was observed for HH mutations for most methods,
apart from FoldX. Better performance and reliability
on inter-group mutations could be influenced by the
natural distribution of mutation effects around mildly
destabilizing mutations, which were enriched in S2648,
and would influence particularly machine learning
methods. Consistent with that, no trends for SDM,
ENCoM and DDGun were observed.

Change of residue volume
Figure 5B and S9 depict the performance trends when
categorizing mutations based on volume changes
between wild-type and mutant residues. In general, per-
formance deteriorated less for this category, with most
methods being outperformed by sequence-based alter-
natives for L2S volume mutations below
40%. Methods seemed more robust for large to small
changes (L2S), with DynaMut2, mCSM-Stability and
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DUET, maintaining performance down to 30% identity.
On the other hand, performance deteriorated more
quickly for S2L mutations (around 50% identity). No clear
trends were identified for SDM, ENCoM as well as DDGun.

Mutations to/from Glycine

Performance trends were consistent for mutations
to Glycine (ToG), with most methods only showing
a sharp decrease in correlation around 40% identity
(Figure 5C and S10), while outperforming sequence-
based methods even beyond this threshold. Alternatively,
for mutations from Glycine (FrG), a substantial variation
in performance was observed, with a peak in perfor-
mance around 70%, which might be due to the limited
number of mutations in this category (5% mutations), in
comparison with mutations to Glycine, which were often
used in mutagenesis experiments (8% mutations).

Effect of mutation on thermodynamics stability of proteins

In general, all methods performed better on desta-
bilizing mutations, which is consistent with previous
observations [71,101,102]. For destabilizing mutations
(Figure 5D and S11), most machine learning methods
only presented performance deterioration below 30%
identity. These methods have been shown before to
perform better on this mutation type, a bias that
was introduced due to the natural distribution of
mutation effects, which has been attempted to be
corrected with the use of hypothetical reverse mutations
[47,48,54,86]. No trends were observed for SDM, ENCoM or
DDGun. Consistently, a sharper decrease in performance
was observed for stabilizing mutations below 70%
identity.

Discussion and conclusion
To better understand how in silico mutation analysis tools
behave in the absence of high-resolution experimental
protein structures, we used homology models at different
identity levels to systematically test the performance
of ten widely used computational tools to predict
mutation effects on protein stability. We found that
when target-template identity for homology modelling
drops below 40%, there is an evident performance
deterioration for structure-based methods, especially for
the machine learning based approaches, a point where
sequence-based methods might be preferable. It has
been previously reported that in order to build reliable
models of a protein of interest, the structure used as a
template should share at least 30% sequence identity
to the target [60]. The identity cutoff identified in this
work is more conservative than this accepted rule-of-
thumb and can be further validated in the future as
more thermodynamics data becomes available. Although
some small differences between the prediction using
homology models and one using experimental structure

were noticed, we think this mainly results from the pre-
diction variance of the prediction methods themselves,
which was reported in a test on structural sensitivity
[103]. We also found that the predictive performance on
AlphaFold2 models was highly consistent with that on
experimental structures for most tools. It represents an
important breakthrough in the field of protein structure
prediction as the community actively seeks the explore
its limitations and adapt it for other applications.

When assessing different mutation categories based
on structural and sequence-based properties, we found
that the identity cutoffs varied from the overall threshold
described above. The reason for this may be a native bias
of the prediction methods, with predictors performing
better on residues that are not solvent exposed, deeper
in the structures and for destabilizing mutations,
consistent with previous observations [71]. Alternatively,
structure-based methods performed worse on exposed
residues, random coil conformations, less frequent
mutations (e.g. from Glycine) and stabilizing mutations,
requiring a higher identity cutoff (50–70%) when using
homology models.

In brief, this work showed that, as sequence iden-
tity of the template decreased, the performance of the
tools deteriorated beyond the performance of sequence-
based tools. As expected, this was more pronounced
for exposed residues and mutations in random coils,
where the largest deviations in structure modelling are
likely to be found. We found that a minimum target-
template identity cutoff around 40% was necessary for
robust performance of structure-based tools when using
homology models as inputs, larger than the minimum
30% sequence identity threshold often used as a rule-
of-thumb for homology modelling. We expect that these
insights will help guide the accurate use and interpre-
tation of these computational tools in the absence of
experimental structures moving forward.

Key Points/Highlights

• We present the first systematic study assessing how
methods to predict stability changes upon mutations
cope in the absence of high-resolution experimental pro-
tein structures.

• This work provides a detailed guideline for in silico muta-
tion analysis, which will assist users in appropriately
using and interpreting prediction results, which could
assist in the study of mutations in protein design and in
genetic diseases.

• This work first applied protein structural models from
traditional homology modelling and AlphaFold2 mod-
elling to mutation effect analysis.
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