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Abstract

Drug discovery is a lengthy, costly and high-risk endeavour that is further convoluted by high attrition rates in later development stages.
Toxicity has been one of the main causes of failure during clinical trials, increasing drug development time and costs. To facilitate
early identification and optimisation of toxicity profiles, several computational tools emerged aiming at improving success rates by
timely pre-screening drug candidates. Despite these efforts, there is an increasing demand for platforms capable of assessing both
environmental as well as human-based toxicity properties at large scale. Here, we present toxCSM, a comprehensive computational
platform for the study and optimisation of toxicity profiles of small molecules. toxCSM leverages on the well-established concepts of
graph-based signatures, molecular descriptors and similarity scores to develop 36 models for predicting a range of toxicity properties,
which can assist in developing safer drugs and agrochemicals. toxCSM achieved an Area Under the Receiver Operating Characteristic
(ROC) Curve (AUC) of up to 0.99 and Pearson’s correlation coefficients of up to 0.94 on 10-fold cross-validation, with comparable
performance on blind test sets, outperforming all alternative methods. toxCSM is freely available as a user-friendly web server and
API at http://biosig.lab.uq.edu.au/toxcsm.
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Introduction
Drug discovery is a costly, time-consuming and uncertain endeav-
our [1–6], with 80–90% of projects discontinued before even getting
tested in humans [6] and almost 95% of drugs entering human
trials failing [3, 6, 7].

Although optimising Absorption, Distribution, Metabolism,
Excretion, and Toxicity (ADMET) parameters are important during
different stages of drug development [8, 9], the assessment
of toxicity remains a limiting and crucial step. In fact, the
therapeutic utility of a drug is a fine balance between compound
efficacy and toxicity [10]. Poor toxicity profiles have been one of
the main causes of attrition during pre-clinical and clinical trials,
where over 40% of novel drugs fail human clinical trials due to
unanticipated human toxicity [11]. Consequently, Van Norman
[11] estimated that success rates in clinical trials would increase
by approximately 44% if toxicity failures could be mitigated or
minimised.

In vivo and in vitro screening techniques usually assist in
the identification of toxicity during drug development stages.

Although helpful, they tend to be expensive, inefficient and
time consuming [12–16]. This has driven the emergence of
computational approaches as a promising strategy for pre-
screening and prioritisation of the large number of potential
compounds being investigated via high throughput screening
[14, 15, 17–26]. Nevertheless, current methods consider only a
limited subset of toxicity endpoints [15, 17, 18, 21–23, 26], missing
key potential toxicity properties, with many methods presenting
limited accessibility and scalability, hindering their practical
utility.

Here, we present toxCSM, a comprehensive and accurate com-
putational platform for the study and optimisation of toxicity pro-
files of small molecules. toxCSM leverages on the well-established
concepts of graph-based signatures, general molecular descrip-
tors and similarity scores to create a web-based machine learning
platform, which is composed of 36 models for predicting a wide
range of toxicity properties, from nuclear and stress responses to
environmental toxicity, which can assist in the development of
safer and less toxic drugs as well as herbicides and pesticides.
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Figure 1. The toxCSM workflow. The toxCSM approach can be subdivided into four main steps. (1) In Data Curation, we have collected experimentally
characterised toxicity profiles of small molecules from general toxicity databases and also looked for data on specific toxicity endpoints in the literature,
resulting in 36 experimental endpoint data sets. (2) Next, in Small Molecule Representation, feature engineering is performed and collected molecules are
represented as feature matrices, which are used as evidence to train machine learning models. Molecules are represented by four types of features, which
vary from general molecular properties to graph-based signatures and similarity scores. (3) In Machine Learning, Feature Selection and Optimisation,
features are selected in a stepwise way, having a machine learning model as an engine to evaluate the feature space. Machine learning models are
also optimised with Bayesian Optimisation and Transfer Learning. Best performing models for each endpoint are then selected based on a trade-off
between complexity and predictive performance (i.e. in terms of Matthew’s and Pearson’s Correlation Coefficient for classification and regression tasks,
respectively) and validated using 5-, 10- and 20-fold cross-validation, and blind test sets. (4) Finally, in toxCSM’s Deployment, predictive models are
made available as a free, scalable and easy-to-use web server and API.

Material and methods
The toxCSM methodological workflow depicted in Figure 1 is com-
posed of four main steps: (1) Data Curation; (2) Small Molecule
Representation; (3) Machine Learning, Feature Selection and Opti-
misation; (4) toxCSM Web Server Deployment. These steps will
be detailed in the following subsections. To better understand
toxCSM, Figure S1 presents a flow chart, incorporating toxCSM’s
bio(chem)informatics workflow.

Data curation
Collecting small molecule endpoints
Experimental data for 36 distinct toxicity endpoints were
collected from the literature (Tables S1 and S2), which fall
into six broad mechanistic categories: (i) nuclear response, (ii)
stress response, (iii) genomic, (iv) environmental, (v) human
dose response and (vi) organic (directly related to organs). These
endpoints are typically used in small molecule research and have
been benchmarks of computational methods [14, 15, 17–23] or
involved in specific in silico toxicity evaluations of independent
approaches [27–31]. Table S1 demonstrates that toxCSM includes
the largest set of endpoints in its evaluation to date.

In Table S2, each toxicity endpoint is further subdivided based
on the nature of the experimental data available, into categor-
ical or continuous target variables, which are associated with
classification or regression problems, respectively. In total, these
endpoints consist of 43,236 unique compounds represented as
SMILES strings, after filtering valid molecules using the RDkit
cheminformatics toolkit [32].

Before splitting each toxicity endpoint into training and
blind test sets, we performed an analysis of the molecular
(sub)structures of each classification endpoint to verify the
reliability of using structural clustering information on splitting.
Nevertheless, clustering molecules using the Butina clustering
algorithm [33] by Tanimoto similarity [34] on Morgan fingerprints
[35] revealed that even structurally very similar molecules could
have opposing toxicity effects (see Table S3 and Supplementary

Material and Methods), showing that clustering is not always
an appropriate alternative to be incorporated into splitting
schemes across machine learning pipelines on molecular data.
If the molecules have diverging opposing toxicity effects, they
should not be grouped together. This means the outputs from the
clustering model are not entirely correct, and their inclusion to
split the data can induce a training and evaluation bias on toxCSM
models. Therefore, we do not rely on clustering information to
develop, evaluate and validate the toxCSM models. Given the high
level of imbalance found in the endpoint data sets, clustering
molecules based on structural similarity to derive training and
blind test sets could also further skew data sets and introduce
more biases. By not considering clustering on data splitting (e.g.
cross-validation, training and blind testing) schemes, we intend to
provide the toxCSM machine learning models with the ability of
better distinguishing toxic molecules (commonly rare in data
sets) from those considered safe (commonly more frequent),
consequently yielding to better generalisation performance.

Thereafter, data within each toxicity endpoint was divided into
training (90%/95%—utilised for internal validation via stratified
10-fold cross-validation) and independent blind test (10%/5%)
sets for assessing predictive performance and generalisation of
toxCSM models. The sizes of both training and blind test sets
were chosen according to data availability, but also to guarantee
fair comparison to alternative methods. For categorical endpoints,
splitting occurred in a stratified manner to ensure a similar
distribution between training and test sets. For continuous end-
points, splitting into training and blind test was performed ran-
domly, with a subsequent analysis to ensure comparable dis-
tributions. Data sets are available at http://biosig.lab.uq.edu.au/
toxcsm/data.

Molecular substructure mining
To guide characterisation of what structural aspects contribute
to toxicity, the molecular substructure miner (MoSS) algorithm
[36] was used to identify substructures that were enriched in toxic
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molecules. MoSS aims to find substructures that can distinguish a
target from a complement group. In the case of toxicity, the target
groups would be those containing the toxic molecules, whereas
the complement groups would be linked to safe molecules. Differ-
ent minimum and maximum percentage thresholds were tested
for the toxic and safe molecules, respectively. Relatively, we aimed
to find substructures appearing in the toxic class at least five
or 10 times more than in the safe class. This analysis can be
found in the Supplementary Materials. It is worth noting that the
substructures discovered by MoSS (Tables S4 and S5) were used to
guide the development and interpretation of toxCSM’s models.

Small molecule representation
Representing small molecules with the objective of using them as
inputs to machine learning models is considered a challenging
task and critical decision step. Several approaches have been
proposed in the literature to properly characterise the complex-
ity across distinct compounds [22, 37–39], including fingerprints,
graph-based representations and deep learning-based features. To
build toxCSM models, small molecules were represented in this
work by four classes of interpretable properties (Tables S6 and
S7), which have been successfully applied in other types of small
molecule prediction tasks [40–50]. We presented an overview
of these features in Figure S2 and summarised all their four
classes next.

General molecular descriptors
Over 150 molecular descriptors quantitatively describing molec-
ular structures, including physicochemical properties, molecular
surface and functional groups, were calculated using the RDkit
cheminformatics toolkit.

Toxicophores
Toxicophores are molecular substructures that are commonly
linked to toxicity [51]. Their bit-vector representations were used
to identify the presence or absence of 36 experimentally validated
and statistically tested toxicophores [52] within each molecule.
Other toxicophores, such as the ones derived in FAF-Drugs4 [51],
have not been included in the molecular representation as they
have not been validated and statistically tested as well as the
toxicophores employed in our representation.

Graph-based signatures
toxCSM’s graph-based signatures were adapted from pkCSM
[22]. These signatures are generated from molecule graphs,
where atoms are regarded as vertices, while covalent bonds
are set as edges. Within the toxCSM graph-based signatures,
atoms were labelled by their respective molecular properties
(pharmacophores), including as aromatic, hydrophobic, acceptor,
donor, positive/negative ionisable. Distance patterns identified
between pharmacophoric atom pairs are summarised as cumu-
lative distributions of distances and represented as a feature
vector. These signatures have been demonstrated to be a robust
approach to represent geometry and physicochemical properties
of macromolecules and small molecules and, as a consequence,
they have been successfully employed in a range of predictive
tasks [40–50].

Similarity-based scores
toxCSM also includes a set of similarity-based features. These
features are based on Tanimoto similarity scores [34] across Mor-
gan/Circular fingerprints [35] between a given input molecule and
known toxic molecules, which are found in the training set of each

endpoint. For continuous endpoints, similarity was only consid-
ered to the 20th percentile of most toxic compounds. The main
purpose of these features is to define reference molecules for toxi-
city. In toxCSM’s endpoints, the number of similarity scores, which
were defined as features, varies from 51 (for the Carcinogenesis
endpoint) to 4,167 (for the AMES Mutagenesis endpoint).

Machine learning, feature selection
and optimisation
In this study, we evaluated ten distinct machine learning algo-
rithms using a 10-fold cross-validation procedure on all endpoints
[53], including Random Forest, Extremely Randomised Trees, Gra-
dient Boosting, Extreme Gradient Boosting, Adaptive Boosting,
Support Vector Machines, Gaussian Processes, Multilayer Percep-
tron for Artificial Neural Networks, K-Nearest Neighbours and
Decision Trees, using the implementations available on the Scikit-
Learn library [54]. Tables S8 and S9 define the initial attempts
on default and non-default hyper-parameters used for training
toxCSM’s models.

To better explore and optimise the hyper-parameters on
toxCSM’s models for each endpoint data, we also used Hyperopt-
Sklearn [55] based on Matthew’s and Pearson’s correlation coeffi-
cients for classification and regression problems, respectively.
Hyperopt-Sklearn relies on a Bayesian optimisation method
named as Tree of Parzen Estimator (TPE) [55, 56]. Briefly, in its
first step, TPE works by randomly sampling from the search
space of hyper-parameter configurations. This initialisation step
is performed to initialise two density distributions (one fitting
good hyper-parameters and the other maintaining bad hyper-
parameter configurations), which are used to guide a Parzen
estimator to hierarchically search for the next algorithm hyper-
parameter configuration. TPE updates the distributions given
this configuration performance and continues with this iterative
process until the defined stopping criterion is satisfied. For
each endpoint, we optimised the hyper-parameters for 2,500
iterations, restricting the runtime of each machine learning model
to 10 minutes. The hyper-parameter space for each employed
machine learning algorithm on Scikit-Learn can be found at
https://github.com/hyperopt/hyperopt-sklearn.

Besides using hyper-parameter optimisation to avoid overfit-
ting and improve predictive performance, a bottom-up greedy
feature selection method was employed with the same two aims
and also to ensure low complexity of the produced machine
learning models for toxCSM. This feature selection method works
as follows. Greedy feature selection starts with zero features in
the feature set and adds one feature at time across its iterative
process. To include one feature in the feature set, this method
evaluates all features (except those already selected) using a 10-
fold cross-validation procedure on a machine learning algorithm.
The evaluation of each feature relies on Matthew’s and Pearson’s
correlation coefficients for classification and regression problems,
respectively. These evaluation coefficients are detailed in Supple-
mentary Materials. After this step, the best performing feature
is combined with the current set. At the end, best performing
models in terms of greedy feature selection were also chosen
based on Matthew’s and Pearson’s correlation coefficients for
classification and regression problems, respectively. It is worth
noting that Matthew’s correlation coefficient was chosen as it
helps to select models which are more resilient to class imbalance.

Feature selection was guided by transfer learning [57], where
the knowledge acquired on the selected features by one machine
learning algorithm is transferred to the others. To do this, all
sets of features selected with one machine learning algorithm
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were tested (in order) by all other algorithms. Next, an analysis is
made to decide the algorithm and the set of features to be used.
If the performance on 10-fold cross-validation of a particular
configuration (i.e. set of features and learning algorithm) is better
than the previous configuration, the current configuration is kept.
This process is done to ensure the best model for each endpoint
in terms of predictive performance and complexity is chosen.

The best models, which were selected for toxCSM for each
endpoint, are shown in Table S10. Supplementary Material pro-
vides a section analysing the selected features in terms of the
number of features, percentual of each type of features and top 10
most important features, which are described in Tables S11–S14.
This analysis can be found in the Supplementary Results. Given
hyper-parameter optimisation and feature selection approaches,
the predictive results of each one of the 10 machine learning algo-
rithms across the 10-fold cross-validation procedure and blind
test assessment (in terms of Matthew’s and Pearson’s correlation
coefficient for classification and regression endpoints, respec-
tively) are shown in Tables S15–S18.

toxCSM web server deployment
To provide a robust, scalable, reliable and easy-to-use toxicity
prediction platform, toxCSM’s web server front end was developed
via Bootstrap framework version 3.3.7, and the back end was built
in Python 2.7 with the use of the Flask framework (version 0.12.3).
The web server is hosted on a Linux server running Apache. The
most important components of toxCSM are depicted in Figure 2:
landing page (Figure 2A), prediction page (Figure 2B) and tabular
results page (Figure 2C). Furthermore, the complementary com-
ponents of toxCSM are depicted in Figures S3–S8.

Input
toxCSM can be used to evaluate small molecule toxicity profiles
with four types of inputs (Figure 2B): (1) an SDF (Structural Data
File) covering a list of molecular structures (up to 1000 molecules);
(2) a SMILES file containing a list of compounds (up to 1000
molecules); (3) a single SMILES (Simplified Molecular Input Line
Entry System) string; (4) a single molecular drawing, where its
respective SMILES is retrieved from the drawn molecule structure.
We utilised these formats (SDF and SMILES) as they are standard
ways to represent chemical compounds. Examples of formatted
files and a help page to assist users can be found at http://biosig.
lab.uq.edu.au/toxcsm/prediction and http://biosig.lab.uq.edu.au/
toxcsm/help, respectively. In addition, users can choose to receive
prediction results via email (Figure 2B/5). Finally, users can select
which toxicity endpoints they would like to get predictions for
their molecules (Figure 2B/6). These have been categorised into
nuclear response, stress response, human dose response, organic,
environmental or genomic toxicities. It is also possible for users
to run all the prediction modes at once or an example.

Output
Toxicity predictions for the input molecules are presented in
tabular format (Figure 2C), which can be downloaded as a
comma-separated-values (csv) file (Figure 2C/8). These involve
either numerical or categorical values accompanied by an
interpretation of the outcome and by the confidence/probability
scores from the predictions (if available). Users can further
interpret the predictions of each molecule by clicking on a ‘View
Details’ button (Figure 2C/7). This leads to an informative analysis
page that presents besides the molecule depiction and SMILES, a
comprehensive list of physicochemical properties, drug-likeness
properties and adherence to druggability rules (within tables and

radar plots) and presence of toxicophores. Figures S1–S6 illustrate
the analysis page for toxCSM.

Application programming interface (API)
An Application Programming Interface (API) to assist users to
seamlessly integrate our predictive tool into their cheminformat-
ics analytical pipelines is also available. Input fields follow the
same format previously described for our web server implemen-
tation (i.e. toxCSM’s API supports as inputs an SDF, a SMILE file
or a SMILE string). All jobs submitted are labelled with a unique
identifier, which is used to query the status of the job. Results are
outputted with these identifiers as a JavaScript object notation
(JSON) standard tabular file. A complete description of toxCSM’s
API, which includes tutorial examples in both curl and python
scripting languages, can be found at http://biosig.lab.uq.edu.au/
toxcsm/api_docs.

Results
The comprehensive collection of predictive models for assessing
human and environmental toxicity of small molecules in toxCSM
was assessed using internal and external validation procedures.
In this section, we have also contrasted performance of toxCSM
models with alternative methods in respect of the Area Under
the ROC Curve (AUC) and Coefficient of Determination (R2) for
classification and regression endpoints, respectively. Both met-
rics are commonly used for toxicity prediction analysis and are
properly defined in the Supplementary Materials. Finally, we have
investigated molecular determinants of toxicity.

Molecular substructural determinants of toxicity
In this section, we investigate the overall properties of toxic
molecules in terms of enriched substructural patterns, which
were identified by MoSS (Tables S4 and S5). When comparing
the substructures that were majorly found in toxic molecules
for environmental endpoints to those found in human-based
endpoints (Table S2), we observed that the substructures were
strikingly more enriched in the former for phosphate, phos-
phorothioate or other, sulphur-, phosphorus- and oxygen atom
combinations. On the other hand, those substructures found in
toxic classes in human-based endpoints were consistently more
enriched in ether, ketone, hydroxyl and nitrogen-enriched sub-
structures. Similarities between the environmental and human-
based endpoints include the presence of chloride and nitroso
groups. However, within the environmental endpoints, these
represented more notable contributions to toxicity. Finally, when
comparing substructures enriched across the different endpoints
to well-known, experimentally validated and statistically tested
toxicophores [52], we have observed that most toxicophores have
been identified by MoSS in the curated endpoints, and our results
are congruent with known toxic compounds, highlighting their
importance for predictive purposes. This was particularly the
case for genomic endpoints, where specific examples include
the sulfonic acid moiety that was enriched in the carcinogenesis
endpoint, and nitrosobenzene, which was mainly observed across
the AMES and micronucleus genomic endpoints. This is one of
the main reasons why these toxicophores were included into the
feature space representing the endpoint molecules.

Performance assessment on internal
and external validation
The predictive performances of the final toxCSM’s classification
and regression models for the 36 distinct toxicity endpoints across
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Figure 2. toxCSM web server. (A) presents the landing page for toxCSM. By clicking on ‘Prediction’ at the top menu, users are directed to the job submission
page (B). Users have four input options to provide their molecules: (1) SDF; (2) SMILES file; (3) a single SMILES string; (4) molecular drawing. Users can
opt in (5) to include their respective email addresses so toxCSM’s web server can send a link with the prediction results. Given the input molecules, users
can choose among six prediction models, run all of them at once or run an example (6). As a result, the predictions in terms of toxicity properties are
shown in (C) by using different levels of toxicity and safety (i.e. low, medium and high) for each input molecule (represented by its respective SMILES).
Furthermore, by clicking on ‘View Details’ in the column ‘Interpretation’ (7), toxCSM will show an extra level of details for this molecule. Finally, these
results can be downloaded by clicking on the button ‘Download Results (csv)’ (8).
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Figure 3. toxCSM’s predictive classification performances. The summary of AUC results achieved by toxCSM on 10-fold cross-validation (A) and blind
test sets (B) across the 31 classification endpoints.

internal (using different cross-validation schemes—5-fold, 10-fold
and 20-fold) and external (blind test sets) evaluation procedures
are shown in Figures 3 and 4, Figures S9–S16 and S18–S22 and
Tables S19–S28. These results have been calculated and generated
after feature selection, hyper-parameter optimisation and trans-
fer learning on all toxicity endpoint models present in toxCSM.

We built classification models for 31 distinct categorical toxi-
city endpoints (Table S2, including six environmental-based and
25 human-related toxicity endpoints). The toxCSM classification
models were able to accurately identify compounds that were
likely to be toxic, achieving AUCs from 0.68 to 0.99 under 10-
fold cross-validation (Figure 3A, Figures S9–S16 and Table S20),
with comparable performance on repeated 10-fold, and on 5- and
20-fold cross-validation procedures, providing confidence in the
trained models (Tables S19, S21 and S22). When the models were
evaluated against independent blind tests (i.e. unseen data), the
AUC performances ranged from 0.80 to 1.00 (Figure 3B, Figures
S9–S16 and Table S23), consistent with performance on cross-
validation, demonstrating toxCSM’s robustness and generalisa-
tion capabilities. A similar trend on generalisation of the mod-
els was also observed in other classification measures, such as
Matthew’s Correlation Coefficient (MCC) and Balanced Accuracy
(BACC).

Figure 3 summarises toxCSM’s classification results, providing
its strong AUC performances. These results are supported by Fig-
ure S17, which can make us conclude that a correlation between

data set size and predicted performance on the blind test set
was not observed, even when the endpoint data sets had similar
sizes. In other words, the predictive performances achieved by
toxCSM tend to be independent of the endpoint data, assuring
those different data distributions do not affect the predictive
performances of the machine learning models on toxCSM. Finally,
when looking at incorrectly predicted compounds across the blind
test sets, there was a major enrichment for large values of molec-
ular logP, number of rings and molecular weight properties, which
are underrepresented in most data sets, on average.

We have also built five regression models on continuous tox-
icity endpoints (Table S2, including four environmental and one
human toxicity endpoints), capable of quantitatively assessing
toxicity levels and ranking compounds accordingly. Under 10-
fold cross-validation, models achieved Pearson’s, Spearman’s and
Kendall’s correlations of up to 0.94, 0.93 and 0.80, respectively
(Figure 4A, Figures S18–S22 and Table S25). Pearson’s, Spearman’s
and Kendall’s correlation performances increased to up to 0.97,
0.97 and 0.86, respectively, after 10% of outliers were removed.
The outliers are defined as the 10% worst predicted data points,
which are the most distant molecular samples to the regression
line defining the best fitting between actual and predicted toxicity
effect values. It is important to emphasise that these outliers were
removed only for analysis purposes.

Taking a closer look at outliers revealed that they usually had
larger values of molecular logP, number of rotatable bonds and
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Figure 4. toxCSM’s regression performances before outlier removal. The summary of coefficient of determination (R2) results achieved by toxCSM on
10-fold cross-validation (A) and blind test sets (B) across the five regression endpoints before and after 10% of outlier removal.

number of rings, consistent with outliers identified for classifi-
cation tasks, denoting underrepresented molecules. We believe
these behaviours are part of the reasons toxCSM’s regression
models tended to slightly underestimate the prediction of numer-
ical toxicity properties (Figures S18–S22). Given this analysis, we
conclude that such features can be used to better understand/in-
terpret toxCSM models in a way to have a closer look at their
predictions while the molecules have larger or normal values
of molecular logP, number of rotatable bonds and number of
rings, for example. Nonetheless, toxCSM demonstrated compa-
rable performance across alternate cross-validation strategies
(Tables S24, S26 and S27) and, also, on independent blind tests
(Figure 4B and Table S28). For instance, before the procedure
of removing 10% of the outliers, toxCSM presented Pearson’s,
Spearman’s and Kendall’s correlation coefficients up to 0.92, 0.91
and 0.78 on the blind test sets, respectively. After outlier removal,
the Pearson’s, Spearman’s and Kendall’s correlation coefficients
could reach values up to 0.97, 0.97 and 0.86 on the blind test
evaluation, respectively. This analysis shows that, on average,
toxCSM regression models will perform exceptionally well while
predicting continuous targets. The regression results of toxCSM
are also summarised in terms of coefficient of determination in
Figure 4, providing clear evidence of the robustness, consistency
and generalizability of the models.

Accordingly, given the overall predictive performance achieved
by toxCSM models on the different cross-validation schemes and
blind test sets, we believe toxCSM reached a suitable the applica-
bility domain for each toxicity endpoint, when applying the mod-
els to an unseen set of compounds. Furthermore, the applicability
domain of the models can be defined by the wide range of toxi-
city categories involved in toxCSM (e.g. stress response, nuclear
response, environmental, organic, dose response and genomic),
making it reliable for distinct types of compounds.

Comparison with alternative methods
In order to put the performance of toxCSM into context, we
compared it with six alternative methods available in the liter-
ature, including DeepTox [17], ProTox II [20], admetSAR 2.0 [23],
ADMETlab 2.0 [15], pkCSM [22] and Interpretable-ADMET [26]. We
show toxCSM models perform better than alternative methods
for all comparisons across classification and regression endpoints
(Tables 1–6 and Tables S29–S32).

Across the classification models, toxCSM was compared to
pkCSM, ADMETLab 2.0, DeepTox, Protox II, admetSAR 2.0 and
Interpretable-ADMET. As these methods follow different valida-
tion procedures and use a different number of endpoints, we limit
comparisons of the Wilcoxon signed-rank test [58] to the blind
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Table 1. Comparison between toxCSM and ADMETLab 2.0 AUCs
across the 21 equivalent classification endpoints; the best
results in this comparison are indicated in bold

Endpoint name Methods

toxCSM ADMETLab 2.0

NR-AhR 0.939 0.943
NR-AR 0.902 0.886
NR-AR-LBD 0.943 0.915
NR-Aromatase 0.877 0.852
NR-ER 0.851 0.771
NR-ER-LBD 0.858 0.850
NR-PPAR-gamma 0.946 0.893
SR-ARE 0.823 0.863
SR-ATAD5 0.882 0.874
SR-HSE 0.876 0.907
SR-MMP 0.957 0.927
SR-p53 0.906 0.881
AMES Mutagenesis 0.929 0.902
Carcinogenesis 0.886 0.788
Skin Sensitisation 0.883 0.707
hERG_I Inhibitor 0.957 0.943
Liver Injury I 0.864 0.814
Liver Injury II 0.797 0.924
Eye Irritation 0.959 0.982
Eye Corrosion 0.999 0.983
Respiratory Disease 0.930 0.828
Average 0.903 0.878

Table 2. Comparison between toxCSM and ProTox II AUCs across
15 equivalent classification endpoints; the best results in this
comparison are indicated in bold

Endpoint name Methods

toxCSM ProTox II

NR-AhR 0.939 0.900
NR-AR 0.902 0.730
NR-AR-LBD 0.943 0.750
NR-Aromatase 0.877 0.750
NR-ER 0.851 0.790
NR-ER-LBD 0.858 0.800
NR-PPAR-gamma 0.946 0.840
SR-ARE 0.823 0.790
SR-ATAD5 0.882 0.800
SR-HSE 0.876 0.870
SR-MMP 0.957 0.920
SR-p53 0.906 0.870
AMES Mutagenesis 0.929 0.900
Carcinogenesis 0.886 0.850
Liver Injury I 0.864 0.860
Average 0.896 0.828

test sets, when they were available, to avoid any biases (Tables 1–
4 and 6 and Tables S29–S32). Therefore, pkCSM and admetSAR 2.0
are not part of these statistical comparisons. In general, toxCSM
presented statistically better results than all alternative methods
(i.e. DeepTox, ADMETLab 2.0, ProTox and Interpretable-ADMET)
on the assessed blind test sets. It is worth noting that although
admetSAR 2.0 and pkCSM did not provide results on the blind
test, toxCSM’s results were comparable to or better than them
across cross-validation procedures, indicating good classification

Table 3. Comparison between toxCSM and DeepTox AUCs across
the 12 equivalent classification endpoints; the best results in
this comparison are indicated in bold

Endpoint name Methods

toxCSM DeepTox

NR-AhR 0.939 0.928
NR-AR 0.9026 0.807
NR-AR-LBD 0.943 0.879
NR-Aromatase 0.877 0.834
NR-ER 0.851 0.810
NR-ER-LBD 0.858 0.814
NR-PPAR-gamma 0.946 0.861
SR-ARE 0.823 0.840
SR-ATAD5 0.882 0.793
SR-HSE 0.876 0.865
SR-MMP 0.957 0.942
SR-p53 0.906 0.862
Average 0.897 0.853

Table 4. Comparison between toxCSM and Interpretable-ADMET
AUCs across the 24 equivalent classification endpoints; the best
results in this comparison are indicated in bold

Endpoint name Methods

toxCSM Interpretable-ADMET

NR-AhR 0.939 0.727
NR-AR 0.902 0.730
NR-AR-LBD 0.943 0.802
NR-Aromatase 0.877 0.679
NR-ER 0.851 0.644
NR-ER-LBD 0.858 0.669
NR-PPAR-gamma 0.946 0.590
SR-ARE 0.823 0.689
SR-ATAD5 0.882 0.619
SR-HSE 0.876 0.685
SR-MMP 0.957 0.769
SR-p53 0.906 0.655
AMES Mutagenesis 0.929 0.815
Carcinogenesis 0.886 0.637
Fathead Minnow 0.937 0.847
Honey Bee 0.860 0.640
Biodegradation 0.935 0.821
Skin Sensitisation 0.883 0.814
hERG_I Inhibitor 0.957 0.750
Liver Injury I 0.864 0.622
Liver Injury II 0.797 0.653
Eye Irritation 0.959 0.913
Eye Corrosion 0.999 0.956
Respiratory Disease 0.930 0.765
Average 0.904 0.729

standards for toxCSM. Furthermore, as Interpretable-ADMET
encompasses two models (i.e. graph attention and graph
convolutional neural networks), we compared the best of each
endpoint model in terms of ROC AUC.

toxCSM regression models were compared with ADMETLab
2.0, Interpretable-ADMET, pkCSM and admetSAR2.0 (Tables 5 and
6), as the other methods did not provide results for any regres-
sion endpoint. However, we only compared toxCSM on the blind
test sets with ADMETLab 2.0 and Interpretable-ADMET because
of result unavailability from the two other methods under this
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Table 5. Comparison of toxCSM to ADMETLab 2.0 and Interpretable-ADMET across three toxicity endpoints; performance values are
reported as coefficients of determination (R2); two values are shown per column for toxCSM, denoting the performance on the entire
data set and the performance after 10% outlier removal; the best results of toxCSM in this comparison are indicated in bold

Endpoint name Methods

toxCSM ADMETLab 2.0 Interprebble-ADMET

Fathead Minnow (LC50) 0.636/0.795 0.745 0.546
T. Pyriformis (pIGC50) 0.849/0.950 0.723 0.832
Acute Rat (LD50) 0.617/0.774 − 0.575
Average 0.701/0.840 0.734 0.651

Table 6. Comparative performance of toxCSM to alternative methods; pairwise comparisons between toxCSM and the alternative
methods for toxicity property predictions across the blind test sets. toxCSM results are shown considering an average across all
endpoints; comparisons are shown in terms of the percentage of toxCSM’s improvement of toxCSM to alternative methods, employing
also a Wilcoxon signed rank test to verify the statistical differences among them; two values are shown per column for the regression,
representing the performance on the entire blind test set and the performance after 10% outlier removal

Endpoint type (Evaluation
measure)

Alternative methods

toxCSM ADMETLab 2.0 ProTox II DeepTox Interpretable-ADMET

Classification (ROC AUC) 0.905 2.5%∗ 6.8%∗ 4.4%∗ 17.5%∗

Regression (R2) 0.651/ 0.746 +0.1%/ +13.9% N.A. N.A. +5.0%/ +18.9%

N.A. denotes cases where the authors of the methods did not provide results on those particular endpoints or blind test sets; ∗ significantly different with
P-value < 0.05.

evaluation procedure. When compared to ADMETLab 2.0 and
Interpretable-ADMET, toxCSM was able to achieve reasonable
better predictive performances in terms of R2, although no sta-
tistical comparison was made due to the low number of endpoint
samples utilised by the alternative method. Furthermore, by look-
ing at pkCSM and admetSAR 2.0 (cross-)validation performances,
toxCSM was able to achieve as good as or better predictive coeffi-
cients when compared to them.

Conclusion
In this work, we develop toxCSM, a comprehensive and scalable
web-based platform to assess toxicity profiles of small molecules
to date, accounting for 36 different endpoints. toxCSM relies on
our well-established graph-based signatures, molecular descrip-
tors and similarity scores to provide accurate and robust pre-
dictors that have been thoroughly evaluated and validated, pre-
senting statistically better predictive performances than alterna-
tive methods across the assessed toxicity endpoints. We believe
toxCSM will be an invaluable tool for the study and optimisation
of toxicity profiles of small molecules at early stages of develop-
ment. We made toxCSM available as an easy-to-use and reliable
web-based platform at http://biosig.lab.uq.edu.au/toxcsm as well
as API, which allows its complete integration with analytical
chemoinformatics pipelines.

Key Points

• toxCSM is a comprehensive and accurate platform to
assess small molecule toxicity profiles.

• toxCSM uses graph-based signatures, molecular descrip-
tors and similarity calculations to predict 36 toxicity
endpoints, outperforming alternative methods.

• toxCSM is freely available via a user-friendly web server
and API to provide a seamless integration with chemin-
formatics and bioinformatics pipelines.

Supplementary data
Supplementary data are available online at https://academic.oup.
com/bib.

Availability
toxCSM’s web server prediction interface and API were made
available at http://biosig.lab.uq.edu.au/toxcsm. The interface is
free for all users, with no requirements of login or licence. In
addition, all the experimental data used to train, (cross-)validate
and test toxCSM’s models can be downloaded at https://biosig.lab.
uq.edu.au/toxcsm/data.
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