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Abstract

The ability to identify antigenic determinants of pathogens, or epitopes, is fundamental to guide rational vaccine
development and immunotherapies, which are particularly relevant for rapid pandemic response. A range of computational
tools has been developed over the past two decades to assist in epitope prediction; however, they have presented limited
performance and generalization, particularly for the identification of conformational B-cell epitopes. Here, we present
epitope3D, a novel scalable machine learning method capable of accurately identifying conformational epitopes trained and
evaluated on the largest curated epitope data set to date. Our method uses the concept of graph-based signatures to model
epitope and non-epitope regions as graphs and extract distance patterns that are used as evidence to train and test
predictive models. We show epitope3D outperforms available alternative approaches, achieving Mathew’s Correlation
Coefficient and F1-scores of 0.55 and 0.57 on cross-validation and 0.45 and 0.36 during independent blind tests, respectively.
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Introduction

B-cells are an essential part of the adaptive immune system
that provides long-term protection against pathogens and harm-
ful molecules through their specific B-cell receptors, known as
immunoglobulins or antibodies [1, 2]. This recognition is medi-
ated by binding of antibodies (Ab) to a specific region of the
antigen known as epitope. Most B-cell epitopes are discontin-
uous, which has made their identification challenging as they
are often composed of residues that may be far apart in the
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sequence, but spatially co-located within the protein structure
[3, 4].

Accurate identification of B-cell epitopes is crucial for disease
control, diagnostics and vaccine development but, in general,
experimental approaches are expensive, time-consuming and
low throughput [5–7]. A number of sequence and structural com-
putational approaches have been proposed, primarily to identify
which residues are likely to be part of an epitope, but have been
shown to be of limited predictive power [8–19]. This is, in part, a
limitation of the data used to develop them, a natural imbalance
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Figure 1. Overview of the epitope3D pipeline composed of four main stages. In the first stage (A), data acquisition and curation are performed. High-resolution biological

assemblies of Ab-antigen complexes are collected and unbound antigen structure candidates selected via sequence and structure similarity, rendering a data set of

245 non-redundant structures. Two main feature classes are then calculated for the identified epitope and non-epitope residues of the data set, including graph-based

signatures and complementary features describing the residue environment (B). Calculated features are then used to train and test predictive models via supervised

learning (C), as a classification task and the best performing model employed to build a user-friendly web interface (D).

ratio of epitope and non-epitope residues present in an antigen
structure and the challenges of identifying features capable of
distinguishing them.

In order to fill this gap and tackle the main hurdles in epitope
prediction, we developed epitope3D, a new machine learning
method and user-friendly web resource trained and validated
on the largest conformational epitope data set collected to date.
epitope3D uses the concept of graph-based structural signa-
tures [20–22] to better model and distinguish epitope from non-
epitope regions.

Materials and methods
The development of epitope3D can be divided in four main
stages: as depicted in Figure 1A, data collection and curation
to identify unbound antigen structures based on experimen-
tal antibody–antigen complexes; Figure 1B feature engineering,
encompassing data modelling and feature calculation using the
curated data, to extract characteristics of both epitope and non-
epitope residues; Figure 1C machine learning and assessment,
involving qualitative data analysis of selected features, training,
evaluation and optimization of predictive models and Figure 1D

development of a web server and API to allow convenient access
to the predictive model and seamless integration into analytical
pipelines.

Data collection and curation

Data collection was performed to identify unbound-state struc-
tures of antigens, using bound structures as a reference, as
done previously [23]. This approach defines epitope residues in
the unbound antigen protein based on experimentally resolved
antibody–antigen complexes published in Protein Data Bank
(PDB) [24]. The central idea of this approach is that different
epitope regions from related antigens bound to antibodies can
be extracted and aggregated on the same antigen, reducing
false negative annotation. A new large-scale data set of con-
formational epitopes was collected and curated following two
major steps: bound structure identification and unbound-state
structure acquisition and annotation.

The first step retrieves all biological assemblies from the PDB
database with a resolution higher than or equal to 3 Å. Next,
antibody–antigen complexes are identified using the ANARCI
tool [25] and antigen chains with at least 25 residues are retained.
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Figure 2. Two-stage dataset curation process: (A) Curation of a bound-state antibody–antigen followed by (B) unbound-state antigen candidates used to train and test

the machine learning model.

Epitope residues in the antigen molecule are determined and
annotated based on a cutoff distance criteria, i.e. any antigen
residue with at least one heavy atom within 4 Å distance of
an antibody residue will be considered an epitope residue. In
this step, 1351 antibody–antigen structures were identified as of
May/2021, covering 40 842 epitope residues.

After identifying epitope residues in the selected set of bound
structures, these are used to propagate epitope annotation to
a new set of unbound antigen structures (candidate antigens),
sharing at least 70% sequence similarity with any antigen pre-
viously identified in a bound structure. In total, 443 candidate
antigen structures were identified based on sequence similarity
search via blastp [26]. Epitopes from bound structures are then
structurally aligned with candidate antigens, using the Pymol
library [27], and epitope annotation is transferred for the mapped
residues only if 100% of structure alignment is achieved. To
further ensure that aligned residues truly belong to epitopes,
these are required to be exposed to solvent, measured by a
relative solvent accessibility (RSA) larger than zero.

This step resulted in 343 antigen structures, which after being
clustered with CD-HIT [28] using a 70% similarity cutoff, gener-
ated a non-redundant data set of 245 unbound antigen struc-
tures, comprising 168 739 data points, with 53.82% of surface
residues and 3.56% epitope residues. The distinction between
surface and buried residues considered here was based on the
RSA threshold of 15% [29] and with the purpose of optimizing the
epitope identification; buried residues were disregarded from
the data. This comprises the largest curated conformational epi-
tope collection to date. The overall filtering process is depicted
in Figure 2.

The non-redundant epitope data set was divided into three
groups: 180 structures for training, 20 for internal testing and
45 structures used as an external blind test. The training and
testing set have an imbalance ratio of 1:29, imposing an extreme

hurdle into the supervised learning stage. To overcome it, two
approaches were assessed to achieve the optimal learning level
for training: randomly under sampling the majority class (non-
epitope residues) and synthetic oversampling the minority class
(epitope residues) using SMOTE [30] available in the imblearn
Python toolbox [31]. This step was repeated 10 times to guarantee
the impartiality of the random selection of the non-epitope class.
The optimal performance arises by applying both approaches
combined: first randomly under-sampling the majority class
data points till imbalance reduces to 1:8, then using SMOTE
technique to synthetically create data points of the minority
class, leading to 4:8 distribution, or 1:2. Therefore, the final set
of 180 structures used to train the classifier contains 50 036
residues, in which 33.33% are epitopes.

As an internal blind-test to assess the machine learning
classifier, the 20 structures set was employed following
the same class distribution used in the training stage, 1:2,
but here only a random under-sampling technique was
adopted to achieve this desired imbalance ratio for a fair
comparison.

Conversely, the 45-structure set used as a non-redundant
external blind-test only disregards the buried residues based on
RSA threshold, as described before, resulting in a 1:13 imbalance
ratio. Data sets used are available as Supplementary Materials
(Tables S1–S3, and online at http://biosig.unimelb.edu.au/epito
pe3d/data.

Feature engineering

In order to investigate properties capable of distinguishing epi-
topes from other protein regions, a range of different features
were calculated and assessed. These can be divided into two
main categories: (i) graph-based signatures and (ii) complemen-
tary properties.
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Figure 3. The concept of graph-based signatures applied for epitope and non-epitope residues. (A) A residue is represented as a green stick and the chosen environment

that surrounds it is painted in orange colour. (B) The atoms within the environment are depicted as orange balls and the interaction amid them are the black edges.

(C) Increasing the cut-off distance within the same environment, more interactions are seen between atoms.

Graph-based signatures

Graphs are versatile and powerful mathematical abstractions
that have been widely and successfully used to model biological
entities and their relationships. We have pioneered the concept
of graph-based signatures to model physicochemical properties
from small-molecules [32–37] to macromolecules [21, 22, 38].
The main idea behind this modelling technique involves mod-
elling atoms as nodes labelled based on their physicochemical
properties (or pharmacophores) and their interactions as edges.
Based on this network representation, distance-based patterns
between different atom types are extracted as a cumulative
distribution function [21, 22, 39], which is used as evidence to
train and test predictive models via supervised learning. This
approach has been successfully employed in a range of appli-
cations, including the development of methods to predict the
effects of mutations on protein structure, function and inter-
actions [20, 39–44]. This concept has also been recently applied
to the study of mutations on Ab-antigen interfaces [34, 45, 46].
Here, we adapted the concept of graph-based signatures to rep-
resent geometry and chemical composition of the environment
surrounding epitope and non-epitope residues, as depicted in
Figure 3.

Complementary features

Seven widely used additional feature classes were investigated.
The first category, proposed in the present work, is the amino
acid composition using a radius scanning matrix. Considering
that epitope regions are enriched with particular residue types
[8, 11], the ratio of each amino acid in epitope and surface
regions was measured from the whole data set and stored as
a propensity dictionary. This process is displayed in Figure S1.
Next, considering an input structure, each residue is taken as a
central point and its neighbours are scanned from a starting dis-
tance of 3–15 Å, considering an incremental step of 1 Å. The goal
is to describe the residue neighbours in terms of residue com-
position for different distances using the dictionary described
above, computing four statistical metrics: average, maximum,
minimum and standard deviation. This generates a 52-value
vector. Figure S2, depicts how this feature is calculated.

The remain six classes were as follows:

• Relative surface area (RSA) was calculated to measure how
exposed each residue was in the protein structure.

• Secondary structure, using DSSP program [47] to desig-
nate the correspondent secondary structure annotation per
residue, which were abbreviated into helix, sheet and turn.

• Disorder composition using IUPred2A and ANCHOR2 [48].
• Position-specific scoring matrix [49] to model how con-

served over evolutionary time epitope and also non-epitope
residues are.

• B-factor score extracted from PDB file for experimental
structures. This indicates the atom’s mobility. The higher
its value, the more flexible a region would be.

• Physicochemical and biochemical amino acid properties
were assessed from the AAindex database [50].

Machine learning methods

Different supervised learning algorithms were evaluated using
the scikit-learn Python toolkit [51], including Multi-layer Percep-
tron, Support Vector Machines, K-Nearest Neighbour, Adaboost,
Gaussian Processes, Random Forest, Gradient Boost, XGBoost
and Extra Trees. Predictive models were evaluated under reg-
ular and stratified 5-, 10- and 20-fold cross-validation, with 20
repetitions and the best performing model selected based on
well-established evaluation metrics including Matthew’s Corre-
lation Coefficient (MCC), Area under the ROC Curve (AUC) and
F1-score. Model generalization was also assessed using a low-
redundancy, independent blind test. In order to reduce model
complexity, reduce noise and optimize predictive performance,
an incremental stepwise greedy feature selection approach was
performed [42, 45].

Results
Exploring epitope and non-epitope properties

We set out to identify properties that could help differentiate
an epitope from a non-epitope residue. Exploring the complete
curated data set of 245 antigen structures we analyzed, for
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Figure 4. Analysis of the main features for epitope and non-epitope groups. In (A), the amino acid composition ratio depicts that Isoleucine (ILE), Phenylalanine (PHE),

Tryptophan (TRP) and Tyrosine (TYR) are enriched in Epitope Regions (Surface). (B) The Violin plot for the RSA. In (C), the calculated secondary structure, if available,

is mapped and grouped in Helix, Sheet or Turn. (D) The probability of being part of a Disordered binding segment and (E) the probability of belonging to a Disordered

Region. To conclude, in (F), we present the B-factor score for both epitope and non-epitope groups. In addition to the violin plots, the non-parametric Wilcoxon Rank

Sum Test was also implemented to statistically verify differences between groups from panel (B)–(F).

epitope and non-epitope residues, the distribution of the Amino
Acid composition, RSA, Secondary structure, the probability of
being part of a Disordered segment and a Disordered region, and
B-factor.

The Shapiro–Wilk Test was applied to confirm that the set is
not normally distributed (P-value < 0.001), and as independent
groups, epitope and non-epitope samples were also submitted
to the Wilcoxon Rank Sum Test to demonstrate the difference
amongst them, resulting in P-values of 2.2e−16 (RSA), 5.7e−09

(Secondary structure), 2.3e−09 (Disordered binding segment) and
2.2e−16 (B-factor), suggesting distinctive medians, supporting
that the alternative hypothesis is to be considered. Analyzing the
composition of the extremes of the distributions of these prop-
erties (above or below the median ± standard deviation), showed
that residues contributing to these differences, for both epitope
and non-epitope groups, are distributed across all structures in
the data set. On the other hand, for the Disordered region feature,
a higher P-value of 0.425 demonstrates no significant difference
among the two groups.

While investigating these characteristics, Figure 4, the amino
acid composition ratio among epitope and surface regions shows
that Lysine (LYS), Phenylalanine (PHE), Tryptophan (TRP) and
Tyrosine (TYR) have the larger difference between Epitope with
Surface regions on the overall data set, with the three last ones
together with Isoleucine (ILE) being enriched in epitope regions.

Predicting conformational epitopes

The best performing predictive model was obtained using
the Adaboost classifier, reaching an AUC and MCC of 0.78
and 0.56, respectively, under 10-fold cross-validation with
only four features selected via greedy feature selection. This
performance was consistent on blind tests, where epitope 3D
achieved an AUC and MCC of 0.59 and 0.35, respectively. The
method displayed a consistent prediction performance over
multiple 10-fold cross validation repetitions, presenting a low
standard deviation (<0.005). Table 1 includes further metrics
describing the prediction results and in Supplementary Data;
Table S4, shows the results of stratified 5-, 10- and 20-fold cross
validation assessment, which were consistent with the results
described above, further demonstrating the robustness of the
method.

The four selected features are depicted in Figure S3. The
Graph-based signature of neutral atoms within 4 Å, the Amino
Acid index KARS160102 which represents the Number of edges
(size of the graph-theoretic model of single point mutations), the
Minimum ratio value of amino acid between Epitope-Surface
regions from a 12 Å radius distance and RSA, all presenting
significant differences between epitope and non-epitope classes
(P-values of: 0.001, 2.5e−16, 0.01 and 2.2e−16, respectively). The
relative importance of the features contributing to the Adaboost
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Table 1. Performance of epitope3D on a complex-based 10-fold cross validation using the training set of 180 structures and with the test set of
20 structures with the same distribution class of 1:2. The metrics presented in the table are: MCC, F1 score (F1), Balanced accuracy (BACC) and
AUC. ∗TP = true positives; ∗TN = true negatives; ∗FP = false positives; ∗FN = false negatives

MCC F1 BACC AUC TP∗ TN∗ FP∗ FN∗

10-fold cv 0.55 0.57 0.70 0.78 7152 36 015 9 10 860
Blind test 0.35 0.30 0.59 0.59 104 1184 0 488

classifier was assessed via Gini importance and is depicted
in Figure S4. The radius scanning feature was identified as
the most important attribute is listed as the top important,
followed by the amino acid index, the graph-based signature
and RSA.

Independent method evaluation with a non-redundant
blind test

As more structural data and new tools become available, there is
a need for an independent benchmark set to allow an impartial
assessment of the predictive capacity of the methods aiming
to predict conformational epitopes. Benchmark data sets used
by previous approaches [8, 12, 52, 53], however, were either
no longer available or were used during method development,
making them unfit for independent assessment. To fill this gap,
we compiled a large non-redundant unbound state antigen set
composed of 45 diverse structures, which we propose to be used
as a standard benchmark for future developments. This was
used here to evaluate other available methods in comparison
with epitope3D. The structures were pre-processed removing
the buried residues based on RSA value, following the same
procedure described in Methods, resulting in 12 230 data points
in which 912 are epitopes (7,45%), which gives an imbalance ratio
of 1:13.

In order to compare our tool in an independent blind test
prediction, we have compared the performance of epitope3D
with the following B-Cell epitope prediction tools: SEPPA
3.0 [54], BepiPred-2.0 [55], Discotope-2.0 [56] and ElliPro [18].
While SEPPA 3.0 explores the influence of glycosylation in
antigen surface patches, inferring that antibody may prefer
to bind in N-glycosylation sites, BepiPred-2.0 analyzed the
residues in terms of hydrophobicity and polarity measurements,
besides their volume, RSA and predicted secondary structure.
Discotope-2.0 considers residue contact counts, in addition to
the RSA and amino acid composition around a residue vicinity,
calculating log-odds ratios between epitope and non-epitope
residues. In a different structural approach, ElliPro characterized
the antigen protein by approximating it to an ellipsoid and
calculated the residue’s protrusion index in order to cluster
them. Table S5, summarizes the features used by previous
methods.

The comparative results are displayed in Table 2. epitope3D
significantly outperformed all alternative approaches in all pre-
sented metrics, reaching a MCC of 0.45 and F1 of 0.36, demon-
strating robustness even in a scenario presenting severe class
imbalance. Additionally, an ROC curve is presented in Figure S5,
with epitope3D obtaining the highest amongst all selected pre-
dictors.

Conformational analysis

To assess how protein conformational states might impact epi-
tope prediction, we have curated a second version of the blind

Table 2. Performance comparison using the independent blind
test (45 structures) with 4 B-Cell epitope predictors: SEPPA 3.0,
Discotope-2.0, ElliPro and BepiPred-2.0

Method F1 MCC BACC

SEPPA 3.0 0.14 0.02 0.52
Discotope-2.0 0.11 -0.01 0.50
ElliPro 0.11 -0.06 0.44
BepiPred-2.0 0.15 0.04 0.55
epitope3D 0.36 0.45 0.61

test set, based on the same Antibody–Antigen complexes as the
45 independent set, but selecting a different unbound candidate
(we were able to select 38 new structures, described in Table S6).
The structural differences between the new antigen structures
compared with their pair from the original 45-set were measured
by Root Mean Square Deviation calculated by the align command
in Pymol (average ∼ 10 Å). No significant performance difference
was observed, with epitope3D achieving an MCC of 0.47 and F1
score of 0.38 (in comparison with an MCC of 0.45 and F1 score of
0.36 in the original blind test), demonstrating the robustness of
the method.

epitope3D web server

To facilitate method usage, a web server was developed with an
intuitive interface utilizing Bootstrap version 4.1.3 as the front-
end framework, taking advantage of its CSS and JavaScript ele-
ments, and Flask version 1.0.2 as the back-end framework. The
user is able to input either the PDB code or upload their structure.
In the Result’s page, as depicted in Figure S6, a Prediction Table
listing the predicted epitope residues is shown, which can also be
observed via an interactive 3D viewer implemented via NGL [57].
Predictions are available to download as a comma-separated file
(csv). Users can also submit jobs to epitope 3D via an Application
Programming Interface (API) described at http://biosig.unimelb.e
du.au/epitope3d/api.

Conclusions
In this study, we present epitope3D, a new conformational epi-
tope prediction tool, that leverages the concept of graph-based
signatures, trained on the largest curated database to date. We
show that epitope3D outperforms similar methods using dif-
ferent independent blind tests. To further contribute to bench-
marking of newly developed methods, we have also curated
and released a non-redundant and independent blind test set
of 45 unbound antigens which will facilitate future performance
comparison between models. epitope3D is freely available in
an easy-to-use web interface and API at http://biosig.unimelb.
edu.au/epitope3d, and we believe that it will be an invaluable
tool to assist and guide vaccine design and immunotherapy
developments.
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Key Points
• A novel scalable machine learning method (epitope

3D), which identifies B-cell Conformational epitopes
trained and evaluated on the largest curated epitope
data set to date.

• Graph-based signatures are an effective approach to
model epitope and non-epitope regions and extracts
distance patterns to train and test predictive models.

• epitope3D outperforms available alternative predic-
tors and proposes a non-redundant unbound state
antigen benchmark for future developments.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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