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Abstract

A crucial factor for the approval and success of any drug is how it behaves in the body. Many drugs,
however, do not reach the market due to poor efficacy or unacceptable side effects. It is therefore important
to take these into consideration early in the drug development process, both in the prioritization of
potential hits, and optimization of lead compounds. In silico approaches offer a cost and time-effective
approach to rapidly screen and optimize pharmacokinetic and toxicity properties. Here we demonstrate the
use of the comprehensive analysis system pkCSM, to allow early identification of potential problems,
prioritization of hits, and optimization of leads.
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1 Introduction

Drug development is a fine balance of optimizing drug like proper-
ties to maximize efficacy, safety, and pharmacokinetics, with the
ultimate goal being to ensure that it can reach the target site in
sufficient concentrations to produce the physiological effect safely.
Getting this balance right is essential for the successful introduction
into the clinic.

The pharmacokinetic profile of a compound defines its absorp-
tion, distribution, metabolism, and excretion (ADME) properties,
while toxicity describes a compound’s safety profile. Small struc-
tural modifications can significantly affect the pharmacokinetic and
toxicity properties of drug candidates.

Experimental evaluation of small-molecule pharmacokinetic
and toxicity properties is both time-consuming and expensive and
does not always scale reliably between animal models and humans.
To address this, many computational approaches have been devel-
oped to guide compound design and selection throughout the
drug development process (Fig. 1). These rely upon associations
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between the chemical structure of a compound of interest and
experimental data for similar structures, and include data-based
approaches such as 2D and 3D quantitative structure–activity rela-
tionship [1–3], similarity searches [4, 5], and structural-based
methods such as ligand–protein docking [6, 7] and pharmacophore
modeling [8]. While many of these are unfortunately not freely
available, the recent development of pkCSM [9] (http://structure.
bioc.cam.ac.uk/pkcsm) has provided a new freely available tool to
comprehensively characterize the pharmacokinetic and toxicity
properties of your compounds of interest.

pkCSM uses the concept of graph-based structural signatures
to study and predict a diverse and complementary range of
ADMET properties for novel chemical entities, including the
following:

l Absorption: Water solubility, Caco2 permeability, human intesti-
nal absorption, and skin permeability, and whether the molecule
is a P-glycoprotein substrate or inhibitor.

l Distribution: Human volume of distribution, human fraction
unbound in plasma, blood–brain barrier and central nervous
system permeability.

l Metabolism: Whether the molecule is a Cytochrome P450 sub-
strate or inhibitor.

Fig. 1 Screening compound pharmacokinetic and toxicity properties throughout the drug development process
using pkCSM as a way to guide and facilitate the drug design process, minimizing risks of failure due to poor
ADMET
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l Excretion: Total clearance and whether the molecule is a renal
OCT2 substrate.

l Toxicity: AMES toxicity, human maximum tolerated dose, oral
rat acute and chronic toxicity, hERG inhibition, hepatotoxicity,
and skin sensitization.

2 Materials

2.1 Running pkCSM 1. List of compound structures of interest formated as canonical
SMILES:

(a) A SMILES string is a widely used line notation for repre-
senting the atomic composition and structure of chemical
entities. In short, a SMILES can be generated from a
graph representation of a molecule (atoms as nodes and
bonds as edges) by executing a depth-first search, gener-
ating a spanning tree. Several different SMILES strings
can be generated for the samemolecule, depending on the
search algorithm used. Several algorithms, however, have
been developed to generate the SMILES for a given com-
pound in a unique way (Canonical SMILES). Users are
advised to use the OpenEye Canonical SMILES as syntax
noncompliant molecules might not be processed cor-
rectly. Several SMILES strings can be combined into a
file for submission to the pkCSM platform to analyse
multiple structures at once.

(b) Molecules of interest can be converted from and to the
SMILES format using any of several different open source
libraries currently available, including Open Babel [10]
and RDKit. There are also several online resources that
can generate smiles (e.g., https://cactus.nci.nih.gov/
translate/).

2.2 Running

CSM-Lig, Arpeggio and

mCSM-Lig

Any valid Protein Data Bank (PDB) files are acceptable for running
the servers as long as they comply with the format, as defined in
http://www.wwpdb.org/documentation/file-format. This way,
the servers are capable of handling crystallographic structures as
well those generated via molecular docking and homology model-
ing [11–13] (see Notes 1 and 2).

1. CSM-lig:

(a) Structure of the compound bound to the protein target in
PDB format; when no experimental structure of the com-
plex is available, molecular docking can be used to model
the complex.

(b) Ligand information;
l Ligand three-letter code (as used in the PDB file);
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l SMILES string of the ligand bound/docked.

2. mCSM-lig:

(a) Structure of the compound bound to the protein target in
PDB format;

(b) Mutation information, including:

l The mutation code, composed by one-letter code of
the wild-type residue, residue position, and one-letter
code of the mutant residue (e.g., D30N);

l The chain ID of the wild-type residues;

l Ligand three-letter code (as used in the PDB file).

(c) Wild-type affinity in nM. This only needs to be approxi-
mate. Experimental data for many molecules can be found
in the BRENDA database [14]. Alternatively, the pre-
dicted affinity from CSM-lig [7] can be used.

3. Arpeggio:

(a) Structure of the compound bound to the protein target in
PDB format.

(b) To calculate and visualize interactions being made by the
compound, the ligand can be selected from the list of
heteroatom groups. Alternatively, the ligand can be speci-
fied in the format “/a/b/”, where a denotes the chain ID
and the compound number, as used in the PDB file.
Example: /A/30/will select ligand number 30 of chain A.

3 Methods

3.1 Running pkCSM 1. Open up the pkCSM prediction server on a browser (pkCSM is
compatible with most Operating Systems and browsers. We,
however, recommend using Google Chrome): http://struc
ture.bioc.cam.ac.uk/pkcsm/prediction;

2. Provide either an input file with a list of molecules in SMILES
format (up to a maximum of 100 molecules) or supply a single
SMILES string for an individual molecule (Fig. 2a) (see Notes
3 and 4)

3. Choose the prediction mode, selecting either between the
individual ADMET property classes (Absorption,Distribution,
Metabolism, Excretion, and Toxicity) by clicking on their
corresponding button, or run a systematic evaluation of all
predictive models.

4. For single molecules (Fig. 2b), the predictions will be displayed
in tabular format, along with a list of calculated molecular
properties. The information shown include the ADMET prop-
erty being predicted, the predictive model name, the actual
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Fig. 2 pkCSM web interface. (a) depicts the submission page from pkCSM where users can submit either a
single or list of compounds as canonical SMILES to predict their pharmacokinetic and toxicity properties by
clicking in the corresponding buttons. A button for calculation of all ADMET properties is also available.
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predicted value and whether the prediction is numerical, indi-
cating the unit of the predicted value, or categorical. A depic-
tion of the molecule is also shown.

5. Predictions for multiple molecules will be shown in an interac-
tive tabular format that can be downloaded as a CSV file
(Fig. 2c). Users have the option to sort the table by any column
and search/filter specific compounds.

3.2 Interpretation of

Output

1. Additional information about the predictive models and how
to interpret the pkCSM predictions can be found via the The-
ory menu of the web server at: http://structure.bioc.cam.ac.
uk/pkcsm/theory.

2. The five more critical pharmacokinetic parameters are
described below.

(a) Plasma half life—This is the time required for the plasma
concentration of a drug to decrease by 50%. It can be
calculated from the natural log of the ratio of volume of
distribution and clearance.

(b) Oral bioavailability—This is the fraction of a drug that
reaches systemic circulation after oral dosing. One of the
crucial steps of this is a compound’s ability to be absorbed
through the intestine. pkCSM provides two predictive
measures of this—Caco-2 permeability and human intes-
tinal absorption.

(c) Plasma protein binding—Most drugs in plasma will exist
in equilibrium between an unbound state, or bound to
serum proteins. The efficacy of a given drug may be
affected by the degree to which it binds proteins in
blood, as the more that is bound the less efficiently it can
traverse cellular membranes or diffuse. This can affect
renal excretion, blood–brain barrier permeability, and
interactions with the target of interest. Hydrophobic
compounds often will bind nonspecifically to many hydro-
phobic sites on many proteins. High-throughput screen-
ing often identifies hydrophobic hits, which can be
extremely difficult to optimize. Conversely, engineering
plasma protein binding has been used to improve the half-
life of peptides by reducing renal excretion. pkCSM pre-
dicts the fraction of a drug that will remain unbound,
based upon human data.

�

Fig. 2 (continued) (b) shows the result page for the predictions of Absorption properties for a single molecule.
The molecular properties of the ligand are shown on the left hand side of the screen. (c) shows the results
page for the prediction of Distribution properties for multiple molecules. The results can be downloaded as a
tab-separated file
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(d) Volume of distribution—The volume of distribution is the
theoretical volume that the total dose of a drug would
need to be uniformly distributed across to give the same
concentration as in blood plasma. The higher this num-
ber, the more the drug distributed in tissues as opposed to
plasma. Hydrophilic and negatively charged compounds
often have small volumes of distribution, as they do not
diffuse effectively into tissues. Compounds that are mostly
bound to plasma proteins will also appear to have a small
volume of distribution. Hydrophobic and positively
charged compounds often have large volumes of distribu-
tion as they can readily dissolve in and interact with the
negatively charged cell membrane. pkCSM predicts the
logarithm of the steady state volume of distribution based
upon human clinical data. The ideal volume of distribu-
tion depends upon the disease being treated and the
targeted half-life. For example, often a large tissue distri-
bution, corresponding to a large volume of distribution is
often considered desirable for antibiotics and antivirals
targeting intracellular pathogens. By contrast, compounds
with a small volume of distribution enable better control
of drug plasma levels, important for compounds with
small therapeutic windows. Distribution, targeting and
clearance of small molecules can also be altered through
the use of drug carriers [15].

(e) Clearance—This is the rate at which plasma is cleared of
the drug. Drug clearance occurs primarily as a combina-
tion of hepatic clearance (metabolism in the liver and
biliary clearance) and renal clearance (excretion via the
kidneys). It is related to bioavailability, and is important
for determining dosing rates to achieve steady-state con-
centrations. pkCSM predicts the total clearance of a drug
based upon data from humans.

3. Toxicity measurements are important to consider relative to the
concentration of a compound needed to exert a therapeutic
effect. This is known as the Therapeutic Index/Window—the
ratio of the dose that leads to lethality in 50% of the population
(Rat LD50 in pkCSM) divided by the minimum effective dose
for 50% of the population. Larger therapeutic indices are pref-
erable since a much larger dose of a drug would need to be
administered to reach the toxicity threshold than that needed
to elicit the therapeutic effect.

3.3 ADMET

Optimization of

Screening Libraries

1. When developing a screening library, or identifying analogs to
screen, for a particular condition, it is worth tailoring it in order
to enrich it for compounds with more favorable properties.

2. Identifying analogues to screen can help expand and develop
the initial hit. This is often performed through 2D and 3D
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similarity searches of initial hits using databases of compounds
from your commercial suppliers (analoging by cataloging) or
large databases (such as the ZINC database: http://zinc.doc
king.org/search/structure).

3. Compounds should be screened for potential problems includ-
ing PAINS groups [16], mutagenic groups and groups with
known toxicity issues.

4. While maintaining broad chemical diversity, the library can be
screened through pkCSM and used to enrich particular ADMET
features favorable for the target protein/disease (e.g., BBB per-
meability for neuroactive compounds [12, 17–19]).

3.4 Modifications to

Improve ADMET

Properties

1. pkCSM predictions can be used when composing screening
libraries, enriching them with compounds that suit the drug
target. For example, when screening for neuroactive com-
pounds, it would make sense to enrich your screening libraries
for compounds with high blood–brain barrier and central ner-
vous system permeability.

2. However, when a lead compound has been identified, there are
chemical modifications that can be performed which may
improve the pharmacokinetic and toxicity profile. Small struc-
tural modifications can significantly affect the pharmacokinetic
and toxicity properties of drug candidates.

3. Using the multiple molecule prediction mode of pkCSM, large
libraries of analogues can be screened to identify compounds
with promising ADMET profiles. A few common medicinal
chemistry strategies used to improve pharmacokinetic profiles
are described below. It is always worth bearing in mind how any
proposed alterations might affect how the compound binds to
the target of interest. While sometimes a successful strategy,
there are many times when new cores will need to be explored
in order to move away from these unfavorable properties.

(a) Improving oral bioavailability: Oral bioavailability is a func-
tion of the proportion of a drug absorbed through the
intestine, and the amount that is metabolized in the liver
before entering the systemic circulation. Passive intestinal
absorption correlates with size, with absorption decreasing
as molecules polar surface area increases beyond 60 A2,
with negligible absorption observed beyond 140 A2.
Charged and hydrophilic compounds absorb best when
their molecular weight is below 200 Da, and hydrophobic
compounds need to be at least partially water soluble.

(b) Improving metabolism profile: High levels of cytochrome
P450 metabolism will reduce oral bioavailability and
plasma half life [20]. This can be reduced through altering
the logP and PSA, and by blocking hydroxylation through
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fluorination and introduction of heteroatoms at potential
sites of hydroxylation.

Other forms of metabolism to watch out for include
metabolism by alcohol dehydrogenase, oxidases and
reductases, esterases, phosphatases, and proteases; and
adduction by strong nucleophiles including glutathione.
Alternatively, sometimes metabolic inhibitors can be used
to potentiate drug action [21, 22].

(c) Improving excretion profile: High levels of renal excretion
will lead to lower plasma half lives. Increased levels of
protein plasma binding and volume of distribution can
reduce renal excretion. Some charged molecules may be
actively secreted. Neutral and lipophilic compounds may
be resorbed back into plasma.

(d) Improving permeability: Blood–brain barrier permeability
is linked to small (below 600 Da, polar surface area below
40 A2), uncharged, lipophilic compounds (logP above 0)
with few rotatable bonds. Groups that form hydrogen
bonds reduce blood–brain barrier permeability. Blood–-
brain barrier permeability may also be decreased through
active excretion by P-gp transporters.

(e) Avoiding toxicity: Currently, along with lack of efficacy,
toxicity issues are the main reason for drug failure. Similar
to how the incorporation of ADME screening into the early
drug development pipeline drastically reduced failures
(in the 80s and 90s pharmacokinetic failures were a leading
cause of drug failures), consideration of toxicity issues early
in the drug development process can mitigate these issues.
Strong electrophiles, and functional groups that are prone
to the formation of strong electrophilic metabolites, are
often toxic and/or mutagenic. Chromophores such as qui-
nolines may be phototoxic and lead to skin sensitization.
Inhibition of human Ether-a-go-go related gene has been
linked to the withdrawal of several drugs that led to cardiac
complications, and should be avoided.

3.5 Identification of

Changes to Affinity

1. Any changes to the drug need to be considered with respect to
how they may alter binding to the target. Using a structure of
the compounds with the target, these effects can be explored in
different ways.

2. Calculating interatomic interactions between protein and
ligand: A map of important molecular interactions being
made by a compound can be generated and visualized using
the Arpeggio webserver [23] (http://structure.bioc.cam.ac.
uk/arpeggio/). Figure 3a shows the Arpeggio’s results pages.
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Fig. 3 Assessing different aspects that influence protein–ligand affinity. (a) depicts the result page for
Arpeggio. A color-coded list of identified interactions and their number is exhibited. (b) shows the result
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Users have the option to download a Pymol session file to
visualize the interactions calculated (see Note 5).

3. Calculating protein–ligand affinity and assessing docking poses:
While docking scores have been considered unreliable, a range
of new approaches are providing more accurate estimations of
binding affinity. For example, the binding affinity of modified
compounds can be predicted using CSM-lig [7] (http://struc
ture.bioc.cam.ac.uk/csm_lig/). Figure 3b shows CSM-lig
results page. Users have the option to asses either a single
protein–ligand complex or submit a compressed file with mul-
tiple poses (limited to 50 MB in size) (see Note 6).

4. Calculating effects of mutations and identifying resistance
mutations: Potential resistance mutations can be identified
using mCSM-lig [24–26] (http://structure.bioc.cam.ac.uk/
mcsm_lig/). This can be used to help identify likely resistance
mutations early in the drug development process [27], in order
to minimize interactions with these resistance hot-spots. When
considering possible resistance mutations it is important to
consider other affects the mutation might have upon protein
stability [28–31] and other interactions [24, 28, 32–37]. The
mCSM-lig results page is shown in Fig. 3c (see Note 7).

4 Notes

1. When uploading a PDB structure generated via homology
modeling or docking, make sure a valid chain ID is present.
The servers will not accept white spaces as valid chain IDs. You
can renumber the chain using a text editor, pymol or web
servers (http://www.canoz.com/sdh/renamepdbchain.pl).

2. When using NMR solved structures, it is a good practice to
select a single model to be submitted (even though the servers
will automatically select the first model).

3. If your compound will not run on pkCSM, make sure that you
are using Canonical SMILES.

4. When uploading a file for the servers (e.g., a list of SMILES for
pkCSM, a list of mutations for mCSM-lig) make sure that you

�

Fig. 3 (continued) page for CSM-lig. A Pymol session with calculated interactions is available, as well
as the calculated ligand properties and its molecule depiction. The predictions are given as the -log(KD or
Ki). (c) shows the result page for mCSM-lig. The mutation information is shown and the prediction is given as
the log(affinity fold change). Negative values, which will be colored in red, denote mutations reducing ligand
affinity
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upload a purely textual file, as other formats will now be
recognized (e.g., .doc, .xls, and others).

5. If your protein will not run on Arpeggio, mCSM-lig or
CSM-lig it is worth checking the PDB structure for nonstan-
dard entities, including:

l Nonstandard atom groups (e.g., metal atoms such as zinc in
capitals ZN);

l Nonstandard residues;

6. Other possible causes of error while running servers that rely
on protein–ligand complexes include:

(a) Ligand is missing from the structure;

(b) Ligand information (ID/number/chain) does not match
the provided PDB file;

(c) In the case of mCSM-lig, mutation information is not
compatible with PDB file (wild-type residue could not
be found in the provided position/chain).

7. Structures with multiple ligands bound might interfere with
the predictions (especially if they are in close proximity to the
ligand or mutation of interest) since they will be taken into
consideration in the calculations.
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