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Gene panel and exome sequencing have revealed a high rate of molecular diagnoses among diseases where the genetic ar-

chitecture has proven suitable for sequencing approaches, with a large number of distinct and highly penetrant causal var-

iants identified among a growing list of disease genes. The challenge is, given the DNA sequence of a new patient, to

distinguish disease-causing from benign variants. Large samples of human standing variation data highlight regional varia-

tion in the tolerance to missense variation within the protein-coding sequence of genes. This information is not well cap-

tured by existing bioinformatic tools, but is effective in improving variant interpretation. To address this limitation in

existing tools, we introduce the missense tolerance ratio (MTR), which summarizes available human standing variation

data within genes to encapsulate population level genetic variation. We find that patient-ascertained pathogenic variants

preferentially cluster in lowMTR regions (P< 0.005) of well-informed genes. By evaluating 20 publicly available predictive

tools across genes linked to epilepsy, we also highlight the importance of understanding the empirical null distribution of

existing prediction tools, as these vary across genes. Subsequently integrating the MTR with the empirically selected bio-

informatic tools in a gene-specific approach demonstrates a clear improvement in the ability to predict pathogenic missense

variants from background missense variation in disease genes. Among an independent test sample of case and control mis-

sense variants, case variants (0.83median score) consistently achieve higher pathogenicity prediction probabilities than con-

trol variants (0.02 median score; Mann-Whitney U test, P< 1 × 10−16). We focus on the application to epilepsy genes;

however, the framework is applicable to disease genes beyond epilepsy.

[Supplemental material is available for this article.]

Over the past decade, the rapid progress in genomic technologies
has made research and clinical sequencing increasingly accessible.
Exome and gene-panel sequencing data are routinely generated
and available to researchers, treating physicians, and patient fam-
ilies. Occasionally, the clinical reports are definitive. Currently,
however, variants of uncertain significance remain the over-
whelming majority class of variants described in genetic reports
(Richards et al. 2015). This is especially true in cases in which pa-
rental sequence is unavailable for interpretation (Lee et al. 2014;
Farwell et al. 2015). Moreover, once the reports are shared the pa-
tient’s physician, patient and family may generate their own im-
pressions over the relevance of uncertain findings in known
disease genes (Fogel 2011).

Two of the more reliable clues to pathogenicity are when the
precise variant has been previously reported in unrelated cases (a

recurring pathogenicmutation), or when the accompanying segre-
gation data includes confirmation that the variant arose de novo
(germline/mosaic) in the affected child of unaffected (or mosaic
carrier) parents (Richards et al. 2015). For the latter, although iden-
tifying a de novo epilepsy gene variant in an epilepsy-ascertained
patient carries great weight in variant interpretation, the back-
ground mutation rate in every gene (including disease genes) im-
plies that some de novo mutations in disease genes have no
clinical relevance. Regarding the recurring mutations, variant cat-
alogs such as ClinVar (Landrum et al. 2016) and HGMD (Stenson
et al. 2003) have proven invaluable in guiding variant classifica-
tions among known disease genes. In the absence of these data,
it is difficult to interpret a novel missense variant. Currently, the
final variant interpretation process often reflects a cumulative as-
sessment of different sources of evidence, with the clinical genet-
icist or genetic counselor’s previous experience influencing how
much weight they choose to assign to each source. As a result, dif-
fering knowledge bases between individuals interpreting the ge-
netic data can make this process highly subjective, which can
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contribute to the variability reported in variant classification
(Amendola et al. 2015, 2016; Rehm et al. 2015). Efforts from the
American College of Medical Genetics and Genomics (ACMG)
and others have drastically reduced variability in classifications
by systematizing the variant interpretation process (MacArthur
et al. 2014; Richards et al. 2015). Yet, one of themajor current tasks
in medical genomics remains the reduction of the rate of Variants
of Uncertain Significance (VUS) by better predicting disease poten-
tial of novel variants found in known disease genes. This has im-
portant implications for the integrity of precision diagnostics
with the rapid emergence of precision medicine opportunities,
particularly in the epilepsies (EpiPM Consortium 2015).

With little promising diagnostic data emerging from large-
scale common variant studies in epilepsy (International League
Against Epilepsy Consortium on Complex Epilepsies 2014), next-
generation sequencing has achieved high rates of molecular diag-
noses for epilepsypatients on thebasis of a single clinically relevant
dominantmutation in a growing list of epilepsy genes, each with a
growing allelic series (Epi4K Consortium and Epilepsy Phenome/
Genome Project 2013, 2017; EuroEPINOMICS-RES Consortium
et al. 2014). Achieving precision diagnostics is important for preci-
sionmedicine trials in epilepsies as they will frequently be restrict-
ed in sample size; thus, selection of the appropriate patients for
enrollment in these trials will benefit from the continuous refine-
ment of tools that facilitate accurate classification of pathogenic
variants.

The increased sequencing of large and diverse populations
has also enhanced our understanding of the patterns typical of
standing variation in individual genes (Petrovski et al. 2013;
Samocha et al. 2014; Lek et al. 2016). Public resources of human
standing variation data continue to grow and have proven invalu-
able in modern-day interpretation of individual variants found
among Mendelian disease genes, including the epilepsies
(Minikel et al. 2016; Epi4K Consortium and Epilepsy Phenome/
Genome Project 2017; Kobayashi et al. 2017; Walsh et al. 2017).
In this study, we take 11 dominant-acting epilepsy genes, seek sub-
regions that are intolerant to missense variation and measure the
concentration of pathogenic classified variants within these mis-
sense-intolerant regions. We also assess the utility of various
publicly available bioinformatic tools to find those that best dis-
criminate the pathogenic missense variants from the empirical
(background missense variant) null distribution in a gene.
Finally, we combine the population genetic and gene-specific bio-
informatic features to show that we can improve interpretation of
novel missense variants.

Results

Pathogenic and background missense variants among

epilepsy genes

We selected 11 dominant epilepsy genes (EpiPM Consortium
2015) of which each had at least 20 epilepsy-associated “pathogen-
ic”missense variants among the combination of ClinVar (accessed
May 1st 2016) and HGMD (hgmd2016.3) variant databases
(Supplemental Table S1): CDKL5, GRIN2A, KCNQ2, KCNT1,
LGI1, PCDH19, SCN1A, SCN2A, SCN8A, SLC2A1, and STXBP1.

Our systematic screen of case-ascertained variants in these 11
genes accompanied by individual review of 1043 pathogenic-re-
portedmissense variants resulted in a set of 606 qualifying case-as-
certained pathogenic variants (Methods; Supplemental Tables S1,
S2; Supplemental Data S1). In this study, the criteria adopted for

qualifying genetic supportwere that either the variant had been re-
ported to have arisen de novo (germline or somatic) or the variant
had been reported as pathogenic in a pedigree inwhich the variant
was present among all (andmore than three) affected familymem-
bers that were genotyped and was not present in more than one of
the reported unaffected family members. This additional require-
ment of segregation evidence was performed to refine the list of
pathogenic reported variants to a subset that is enriched for clini-
cally relevant missense variants (Supplemental Data S1). We ac-
knowledge that some of the 606 qualified missense variants in
the 11 studied epilepsy genes may not be clinically relevant.

Although population reference cohorts can influence wheth-
er a variant was reported as pathogenic in ClinVar and HGMD, we
did not directly use presence or frequency of an allele in the pop-
ulation reference cohorts to qualify pathogenic-reported variants.
Thus, we could evaluate the differences in population frequencies
of the 606 variants that we designated as qualified, versus the
437 unqualified missense variants. Comparing against population
reference cohorts—ExAC v1, ExAC v2, ESP6500SI, the 1000
Genomes Project, and gnomAD—we find that nine (1.5%) of
the 606 qualified variants were observed at least once in the popu-
lation reference cohorts, with allelic count of at most two; among
the 437 unqualified variants, we observe a significantly higher rate
of 44 variants (10.1%) reported at least once (Fisher’s exact test P =
5 × 10−10), with allelic count ranging up to 351 (Supplemental
Data S2). Only one of the 606 qualified variants was observed
more than once among the 277,264 chromosomes in the ExAC
v2 and gnomADdata set, comparedwith 28 of the 437 unqualified
variants (0.2% versus 6.4%; Fisher’s exact test P = 3 × 10−10)
(Supplemental Data S2).

To identify a benign-enriched set of missense variants within
the 11 epilepsy genes, the ExAC reference cohorts were used to
define three mutually exclusive groups of presumed benign mis-
sense variants. We considered only variants passing the quality
control checks imposed by the database creators. For the first group
of presumed benign missense variants (Control Group 1), we took
singleton missense variants reported exactly once in the ExAC v1
reference sample of 60,706 individuals (release 0.3.1) (Lek et al.
2016). For the second group (Control Group 2), we took singleton
missense variants reported in the approximately twofold larger
ExAC v2 and gnomAD reference sample of 138,632 individuals (re-
lease 2.0) restricting to variants that were not reported in the pre-
ceding ExAC v1 release 0.3.1. A third group of presumed benign
missense variants (Control Group 3) was created using variants
present at a consistently low minor allele frequency (MAF)
<0.05% across each of the seven ancestral groups reported in the
combined ExAC v2 and gnomAD data, excluding missense vari-
ants reported in Control Groups 1 and 2 (Methods).

Identifying missense-intolerant subregions of genes

We previously introduced a regression framework to quantify the
extent to which protein-coding genes are tolerant to common
functional variation in the human population. This score, known
as the residual variation intolerance score (RVIS), is currently
among themost widely usedmeasures of human-lineage purifying
selection at the gene level (Petrovski et al. 2013). We and others
have shown that epilepsy genes are, in general, highly intolerant
(Petrovski et al. 2013; Samocha et al. 2014). Important to interpret-
ing variation within disease genes, we and others have subse-
quently showed that clinically relevant missense variants are
more likely to occurwithin themore intolerant exons or conserved
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domains database (CDD) structures of disease-associated genes
(Gussow et al. 2016; Amr et al. 2017). More recently, we have dem-
onstrated that identifying subregions of disease-associated genes
that are less (or more) tolerant to missense variation can improve
interpretation of newly identified missense variants (Swanger
et al. 2016; Ogden et al. 2017).

In this study, we adopt a heuristic sliding window approach
to identify missense-intolerant regions independent of known
gene structures. This Missense Tolerance Ratio (MTR) heuristic
compares the observed proportion of missense variation to the ex-
pected proportion given the sequence context of the protein-cod-
ing region of interest, and has an important advantage of being
sensitive to variability within gene structures (Methods). The
MTR is calculated for windows of 31 codons, reflecting 93 pro-
tein-coding nucleotides (Methods). We previously demonstrated
the research utility of this approach after applying it to three glu-
tamate receptor genes GRIN1, GRIN2A, and GRIN2B (Ogden et al.
2017). Here, we report the MTR plots for the 11 epilepsy genes us-
ing the ExAC v1 (release 0.3.1) and subsequently, the more recent
ExAC v2 combined with gnomAD data (release 2.0) (Lek et al.
2016). We supplement each window’s MTR estimate with a bino-
mial exact test for deviation fromMTR = 1 adjusting for the study-
wide false discovery rate using the Benjamini-Hochberg procedure
(Supplemental Data S3). Our MTR viewer is publicly available and
supports more than 85,000 distinct Ensembl transcripts spanning
more than 18,000 distinct HGNC gene symbols (http://mtr-viewer
.mdhs.unimelb.edu.au).

By not focusing on known gene structures, the MTR sliding
window can represent howpurifying selection has shaped a gene’s
landscape of human-lineagemissense intolerance (Fig. 1). Each co-
don is assigned an estimate of missense intolerance based on the
preferential depletion of missense variation at that codon and 15
flanking codons on either side. For practical purposes, we can
also define gene-specific thresholds of missense depletion corre-
sponding to, for example, the 5th percentilemostmissense deplet-
ed regions in a specific gene (dashed orange lines) or the 25th
percentile most missense depleted (dashed dark green lines)
(Methods). Supplemental Figure S1 shows MTR plots in the con-
text of the distribution of pathogenic (qualified and unqualified)
missense variants.

Figure 1 presents the ExAC v2 data as this is the largest single
sample of standing variation currently available. However, we also
generated MTR sliding windows restricted to the ExAC v1 data
(Supplemental Fig. S2; Supplemental Data S3). To be able to use
the novel genetic variation observed exclusively in the ExAC v2
sample as background missense variation, all subsequent case ver-
sus control enrichment comparisons rely on ExAC v1 (release
0.3.1) MTR estimates.

Evaluating the predictive utility of the MTR estimates among

epilepsy genes

An aspect that often influences variant interpretation is the prox-
imity of a novel patient-ascertained variant to previously reported
pathogenic variants. Here, we use lollipops-v.1.3.1 (Jay and
Brouwer 2016) to plot the distribution of the 606 qualified patho-
genic variants across the linear gene structure of the 11 epilepsy
genes (Methods; Fig. 2).

To verify the predictive utility of standing variation data for
epilepsy risk, we performed two analyses. First, using the ExAC
v2MTR estimates (Fig. 1; Supplemental Data S3), we adopt a bino-
mial exact test to determine whether the 606 qualified pathogenic

missense variants preferentially occur within the most intolerant
25th percentile of a gene’s MTR distribution (Supplemental Data
S3). We find current evidence for this preferential enrichment
among six epilepsy genes: CDKL5 (P = 1.1 × 10−12), KCNQ2 (P =
1.1 × 10−23), PCDH19 (P = 0.003), SCN1A (P = 9.7 × 10−9), SCN2A
(P = 1.9 × 10−4), and SCN8A (P = 3.5 × 10−4) (Table 1). Although ad-
ditional genes showed an elevated rate of pathogenic variants in
the lower quartile of MTR, the limited number of pathogenic var-
iants makes this test insufficiently powered to achieve statistical
significance (Table 1). Larger catalogs of pathogenic alleles will
clarify the predictive utility of MTR in such genes. For other genes,
it is possible that critical codons may not be sufficiently concen-
trated in subregions of a gene to enable current 31-codon window
size to be sensitive to smaller critical regions (Supplemental Fig.
S1). Larger catalogs of human standing variation will enable small-
er MTR windows.

Next, we use the MTR estimates generated from the smaller
ExAC v1 (release 0.3.1) data (Supplemental Data S3) to perform
an empirical test comparing the 606 pathogenic missense variants
and the 1377 Control Group 2 variants (Methods; Supplemental
Fig. S3). This case-control design does not depend on a defined
threshold of intolerance. Despite using the less informative ExAC
v1 MTR estimates in this particular evaluation, the data continue
to show significant evidence for pathogenicmissense variants pref-
erentially affecting codons with lower MTRs for six of the most in-
formed epilepsy genes (Table 2). We illustrate this comparison
using SCN1A and KCNQ2 examples, the genes with the longest
list of pathogenic missense variants available in this study (Fig. 3).

Evaluating the predictive utility of variant-level

bioinformatic tools

Our next strategy in this framework was to evaluate existing bioin-
formatic tools that help predict the deleteriousness of specific mis-
sense variants (Cooper and Shendure 2011), ranging from legacy
tools such asGERP++ (Davydov et al. 2010), PolyPhen-2 (Adzhubei
et al. 2013), and SIFT (Ng and Henikoff 2003), to more contempo-
rary ensemble-based tools such as CADD (Kircher et al. 2014). Al-
though these tools frequently capture similar information, they
can also detect various signals of deleteriousness that might not
be as apparent when the tool’s performance is evaluated based
on the entire exome. Here, we determine the score distribution
(based on all possible missense variants in a gene) and the empir-
ical null distribution (based on a control variant sample in a gene)
for each bioinformatic tool in each of the 11 genes. We use these
data to evaluate which tools best discriminate the 606 qualified
pathogenic variants from the 1514 ExAC v1ControlGroup 1 back-
ground variants within each of our studied epilepsy genes (Meth-
ods; Supplemental Data S4).

We began with 31 tools (herein referred to as features) and
used them to score all 88,865 possible missense variants that
span the 11 epilepsy genes of interest (Supplemental Data S4).
These features were primarily accessed through dbNSFP version
3.2c, and to standardize scores within a [0–1] range, we adopted
the dbNSFP rank scores (Methods; Supplemental Table S4). We as-
sessed the variance of each feature and the pairwise correlations
between the features to prune the list to a subset of 20 features
with absolute pairwise correlations |r| < 0.75 (Methods; Supple-
mental Fig. S4). We then evaluated the importance of the 20 bio-
informatic features by adopting a permutation-based Boruta
algorithm (Kursa and Rudnicki 2010). We used the Boruta algo-
rithm to ensure that all features were independently evaluated
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for their ability to discriminate pathogenic variants from the ExAC
v1 singleton (background) variants (Methods). The Boruta algo-
rithm uses a random forest approach to compare the Z-scores of

the original features with Z-scores of shadow features created for
each original feature by randomly shuffling the information with-
in the original features. Features that do not perform as well as the
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Figure 1. ExAC v2 MTR plots for the 11 epilepsy genes: (A) CDKL5; (B) GRIN2A; (C ) KCNQ2; (D) KCNT1; (E) LGI1; (F ) PCHD19; (G) SCN1A; (H) SCN2A; (I)
SCN8A; (J) SLC2A1; and (K ) STXBP1. Regions in red achieved a study-wide FDR < 0.05 (Supplemental Data S3). MTR = 1 is depicted by the dashed blue line.
Multiple gene-specific estimates are also depicted, including a gene’s median MTR (black dashed line), 25th percentile MTR (dark green dashed line), and
5th percentile lowestMTR estimates (orange dashed line). The gray dashed line reflects howwell that region of the genewas covered in the ExAC v2 sample
data by showing the proportion of all ExAC v2 samples that achieved at least 10-fold coverage at the sites relevant to that codon (Methods).
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randomized features are considered uninformative (Fig. 4, red box
plots).We define a “highly informative” category representing fea-
tures for which the minimum (excluding outliers) random forest

Z-score of an original feature outperforms all permutations (in-
cluding outliers) of the best performing randomized feature for
that gene (Fig. 4, dashed red line).

A
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G
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I

J

K

D
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Figure 2. The distribution of the 606 qualified pathogenic variants (red circles) among the 11 epilepsy genes. The distribution of the 606 qualified path-
ogenic variants across genes: (A) CDKL5; (B) SLC2A1; (C) LGI1; (D) STXBP1; (E) GRIN2A; (F) KCNQ2; (G) KCNT1; (H) PCDH19; (I) SCN1A; (J) SCN2A; and (K )
SCN8A.
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Nine of the 11 genes revealed at least one highly informative
feature (Fig. 4; Supplemental Table S5). Although GRIN2A and
KCNT1 highlight multiple informative features (Fig. 4, green box
plots), no single feature met the highly informative criteria using
our current sample. Larger catalogs of pathogenic variants will en-
able some features to achieve this in future iterations. Through this
process, we also identified three features that consistently excelled
in discriminating pathogenic from background variants among
the studied epilepsy genes: VEST 3.0 (eight genes) (Carter et al.
2013), MutationAssessor (seven genes) (Reva et al. 2011), and
PROVEAN (six genes) (Choi and Chan 2015) were consistently
highly informative (Fig. 4; Supplemental Table S5). Recently,
VEST 3.0 was found to be the top-performing individual tool in
Ioannidis et al. (2016). Although features can share information,
by design, the Boruta permutation evaluates each feature’s impor-
tance independent of signals that might be shared with other fea-
tures (Methods).

Generating the annotations from 31 bioinformatic features
also provided an opportunity to evaluate whether existing bioin-
formatic tools correlate highly with the new information captured
by the empirical depletion of missense variation surrounding a
variant, namely theMTR estimates.We found that VEST 3.0, ama-
chine learning method that predicts the functional significance of
missense mutations (Carter et al. 2013), and Condel, a feature us-
ing a consensus deleteriousness score combining tools (González-
Pérez and López-Bigas 2011), achieved the highest absolute corre-
lation with the ExAC v1 MTR estimates, Pearson’s |r| = 0.27.
Closely following were CADD v1.3 (Kircher et al. 2014) and

PolyPhen-2 (Adzhubei et al. 2013), achieving Pearson’s |r| of 0.26
and 0.25, respectively (Supplemental Fig. S4).

Validating the top performing bioinformatic tools

To evaluate the predictive utility of features in an individual
gene, we compared each feature’s score distribution between
the mutually exclusive Group 1, Group 2, and Group 3 control
variants and the 606 qualified and the 437 unqualified pathogen-
ic variants (Supplemental Fig. S5). Among the highest ranking
features, we continued to observe significant differences in rank
score distributions (Mann-Whitney U test, P < 0.001) when com-
paring the 437 unqualified pathogenic variants with the 1377
Group 2 Control variants (ExAC v2 singletons absent among
ExAC v1) that were not used in the Boruta assessments. As a neg-
ative control, we found no significant difference for any feature
when comparing Control Groups 1 and 2 (P > 0.05) (Supplemen-
tal Table S6).

Supplemental Figure S5 comprehensively demonstrates how
tools can dramatically vary in their score distributions across dif-
ferent genes. This stresses the value of interpreting a novel vari-
ant’s score relative to the empirical null distribution of that tool
in that gene. By placing a novel missense variant in the context
of these gene-specific score distributions, we can also assess how
often we expect to come across a variant of similar score in that
gene based on a sample of presumed benign background variants
sampled from population reference cohorts. Although important
to interpreting the scores generated by predictive tools, the

Table 1. Preferential enrichment of pathogenic variants among the most intolerant quartile of a gene’s MTR estimates

Gene
ExAC v2 MTR estimate corresponding
to the 25th percentile within the gene

Fraction of qualified pathogenic variants
affecting the gene’s 25th percentile MTR residues Exact binomial test

CDKL5 0.578 83% (29/35) P = 1.1 × 10−12

GRIN2A 0.572 61% (8/13) P = 0.006
KCNQ2 0.483 78% (64/82) P = 1.1 × 10−23

KCNT1 0.597 35% (7/20) P = 0.31
LGI1 0.654 44% (7/16) P = 0.14
PCDH19 0.628 52% (14/27) P = 0.003
SCN1A 0.596 42% (105/253) P = 9.7 × 10−9

SCN2A 0.510 47% (29/62) P = 1.9 × 10−4

SCN8A 0.308 53% (19/36) P = 3.5 × 10−4

SLC2A1 0.578 23% (7/31) P = 1
STXBP1 0.538 23% (7/31) P = 1

The adjusted alpha for the 11 tested genes is equivalent to P < 0.0045. Genes below this P-value are denoted in bold.

Table 2. Comparing the distribution of MTRs between the 606 qualified pathogenic variants and the 1377 Control Group 2 missense variants

Gene Gene-wide median ExAC v1 MTR
Case and control number

of singleton missense variants Case median MTR Control median MTR
Mann-Whitney

U test

CDKL5 0.732 35 and 79 0.448 0.775 P = 6.8 × 10−8

GRIN2A 0.702 13 and 229 0.312 0.750 P = 5.7 × 10−4

KCNQ2 0.575 82 and 89 0.201 0.684 P = 1.3 × 10−20

KCNT1 0.662 20 and 161 0.578 0.707 P = 0.008
LGI1 0.688 16 and 53 0.673 0.673 P = 0.29
PCDH19 0.729 27 and 117 0.634 0.774 P = 0.01
SCN1A 0.726 253 and 229 0.567 0.790 P = 4.0 × 10−16

SCN2A 0.651 62 and 188 0.514 0.755 P = 1.6 × 10−7

SCN8A 0.546 36 and 125 0.251 0.728 P = 4.1 × 10−8

SLC2A1 0.660 31 and 52 0.621 0.744 P = 0.31
STXBP1 0.565 31 and 55 0.531 0.634 P = 0.02

The 1377 Control Group 2 missense variants are singleton missense variants observed in ExAC v2 and not reported among ExAC v1. The adjusted
alpha for the 11 tested genes is equivalent to P < 0.0045. Genes below this P-value are denoted in bold.
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empirical null distribution of a tool is rarely discussed when tools
are cited as support for variants.

Evaluating the predictive utility of a gene-specific pathogenicity

prediction model

So far we have introduced mutation tolerance as a predictor of
pathogenicity and assessed the predictive utility of a range of avail-
able bioinformatic tools. Next, we explore creating a multivariate
logistic regression model for each gene to evaluate whether
leveraging information frommultiple features can improve predic-
tions of pathogenicity. For the epilepsy genes where ExAC v1MTR
achieved a P < 0.0045 in Table 1, the ExAC v1MTRwas included in
themodel.We then used forward–backward selection to add to the
model the top ranking bioinformatic features (Supplemental Table

S5) for the gene while estimating the Akaike information criterion
(AIC) for each model. Comparing the AIC across models, the addi-
tion of features was halted when no subsequent model was likely
(P > 0.05) to reduce information loss compared to the previous
model (Methods; Supplemental Table S7). Notably, the features
in the final model do not include all features observed as highly
informative based on the Boruta assessments. In the Boruta fea-
ture evaluations, each feature was assessed independent of other
features; however, in the model building process, certain informa-
tive features may not be necessary due to correlation in their
information.

For five epilepsy genes GRIN2A (CADD), KCNT1 (VEST3),
LGI1 (VEST3), SLC2A1 (MutationAssessor), and STXBP1 (VEST3),
there was no evidence in the current sample to support the
addition of features beyond the gene’s top ranked feature

A

B

C

D
KCNQ2

SCN1A

Figure 3. ExAC v1MTR plot with case and control missense variant distributions. The ExAC v1MTR plots with the case-ascertained qualified pathogenic
(red circles) and ExAC v2 Control Group 2 benign (blue circles) missense variants across epilepsy genes SCN1A (A,B) and KCNQ2 (C,D).
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Figure 4. Boruta feature evaluations: (A) CDKL5; (B)GRIN2A; (C ) KCNQ2; (D) KCNT1; (E) LGI1; (F) PCHD19; (G) SCN1A; (H) SCN2A; (I) SCN8A; (J) SLC2A1;
and (K ) STXBP1. Blue box plots correspond to minimal, average, and maximum Z-score of a shadow feature. Red, yellow, and green box plots represent Z-
scores of uninformative, inconclusive, and informative features, respectively. (∗) Indicates the “highly informative” features for which the minimum non-
outlier random forest Z-score exceeded the maximum random forest Z-score of the best performing randomized shadow feature (red dashed line).
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(Supplemental Table S5). With the exception of SLC2A1, these
genes were the least informed in our current study—containing
the smallest sample of pathogenic missense variants (Supplemen-
tal Table S2). Our ability to assess these genes will improve with
larger catalogs of pathogenicmissense variants in future iterations.
For the remaining six epilepsy genes, we built a regression model
containing the features with significant contributions, and we re-
fer to a prediction from these models as a gene-specific probability
of pathogenicity (GPP) score. The training data used to fit themod-
el was taken from the 606 qualified pathogenic and 1514 Control
Group 1 missense variants that overlapped the gene being mod-
eled (Methods; Supplemental Table S8). All six models achieved
an AUC≥ 0.92 when reapplied to the training data. To assess
each model’s performance on an independent test sample, for
each gene, we took missense variants that were not used to select
features or fit the model from the 437 unqualified case variants
and the 2443 Control Group 2 and Control Group 3 variants.
We found that all six models achieved AUC≥ 0.83 when predict-
ing this independent test sample (Table 3; Supplemental Fig. S6).

Each of the gene-specific models computed the predicted
probability that a missense variant is pathogenic for all possible
missense variantswithin each of the individual genes (Supplemen-
tal Data S4). We find that these GPP score distributions differ sig-
nificantly when comparing both the training (Mann-Whitney U
test, P = 2.1 × 10−155) and the test (Mann-Whitney U test, P =
3.5 × 10−99) case missense variants to the Control Group 2 (inde-
pendent test) sample (Fig. 5). There is no significant difference in
the GPP distributions between Control Group 1 and Control
Group 2 (Mann-Whitney U test, P = 0.11) (Fig. 5; Supplemental
Fig. S7).

We generated another set of predictions by swapping the
qualified pathogenic case variants for the unqualified case variants
and using the ExAC v2 Control Group 2 and 3missense variants to
fit a new logistic model and continued to observe improvement in
the GPP scores among qualified pathogenic variants (Supplemen-
tal Fig. S8). An evaluation limited to the six epilepsy genes for
which a customized prediction model was constructed, GPP was
found to be a superior predictor of pathogenic missense variants
than MPC, a recently available integrated missense variant score
that includes an alternative subregional intolerance component
(DeLong’s test for two correlated ROC curves P = 4.9 × 10−17) (Sup-
plemental Fig. S9; Samocha et al. 2017).

We also generated a globalmodel using the information from
all 11 genes to undergo the model building that was performed for
the gene-specific models (Supplemental Fig. S10). Although the
global model was significantly predictive of pathogenic test vari-
ants (Mann-Whitney U test, P = 2.9 × 10−88), compared to the

GPP scores from the gene-specific models, the global model
achieved lower GPP scores for test case variants (median GPP score
of 0.76 versus 0.83) and higher GPP scores for the population con-
trol test variants (median GPP score of 0.04 versus 0.02). This was
reflected by a weaker difference in score distributions when com-
paring the test case to the test control samples using the global
model (Mann-Whitney U test, P = 2.9 × 10−88) (Supplemental Fig.
S10) versus using the gene-specific models (Mann-Whitney U
test, P = 3.5 × 10−99) (Fig. 5). These differences provide support
for use of a gene-specific pathogenicity prediction model.

Real-time validation: SCN2A

After the conclusion of our analysis of SCN2A, a new paper with a
large catalog of novel pathogenic-reported variants provided an
ideal opportunity to validate our approach (Wolff et al. 2017).
This study reported 52 distinct SCN2Apathogenicmissense chang-
es not found among our case or control collections. Overall, we
found that the newly available SCN2A case variants had a signifi-
cantly higher GPP score (n = 52; median GPP score of 0.70) com-
pared to the Control Group 2 variants (n = 188; median GPP
score of 0.02; Mann-Whitney U test, P = 6.4 × 10−17) (Fig. 6A).
Among the subset of novel SCN2A missense variants in Wolff
et al. (2017) that qualified as having occurred de novo and restrict-
ing to severe epileptic encephalopathies, we observed a shift to-
ward higher GPP scores (n = 24; median GPP score of 0.82)
compared to the remaining novel missense variants (n = 28; medi-
an GPP score of 0.64; Mann-Whitney U test, P = 0.02). There was
no significant difference between the GPP score distribution of
the 52 novel variants and the SCN2A pathogenic qualified variants
used to fit the SCN2A model (n = 62; median GPP score of 0.65;
Mann-Whitney U test, P = 0.84). Applied to the new variants, the
SCN2A gene-specific model achieved an AUC of 0.88, with the
ExAC v1 MTR estimate (AUC= 0.74) and each of the independent
bioinformatic features achieving high prediction accuracy in this
novel case sample: FATHMM (AUC= 0.78), VEST release 3 (AUC
= 0.87), and PolyPhen-2 HumDiv (AUC = 0.83) (Fig. 6B).

Discussion

Evaluating the clinical relevance of a novelmissense variant found
in an established disease gene is recognized as one of the central
challenges facing modern medical genomics (MacArthur et al.
2014; Richards et al. 2015). Although probabilistic bioinformatic
tools are unlikely to completely solve this problem, they can opti-
mize the triaging of candidate variants by identifying the empiri-
cal bioinformatic signatures of pathogenicity—properties found

Table 3. Gene-specific model performance metrics reported for each model applied on the training and subsequently on an independent test
set

Gene

Training data Test data

Case: control AUC Balanced accuracy Sens|Spec Case: control AUC Balanced accuracy Sens|Spec

CDKL5 35: 104 0.99 0.96 0.98|0.94 13: 154 0.92 0.78 0.94|0.62
KCNQ2 82: 97 0.99 0.94 0.95|0.93 51: 171 0.94 0.90 0.94|0.86
PCDH19 27: 125 0.96 0.86 0.94|0.78 42: 202 0.94 0.80 0.97|0.64
SCN1A 253: 206 0.92 0.83 0.75|0.91 179: 389 0.89 0.80 0.78|0.82
SCN2A 62: 190 0.93 0.81 0.92|0.71 40: 284 0.83 0.78 0.89|0.68
SCN8A 36: 167 0.92 0.81 0.98|0.64 11: 228 0.98 0.92 0.93|0.91

The balanced accuracy, sensitivity (Sens), and specificity (Spec) are based on gene-specific probability of pathogenicity (GPP > 0.5) classifications.
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to be significantly enriched among variants that have been de-
scribed to be clinically relevant (Petrovski et al. 2013; Zhu et al.
2015).

Recently, we found that pathogenic missense variants pre-
ferentially reside in the missense-intolerant subdomain and exon
structures of known disease genes (Gussow et al. 2016). Although
investigators frequently browse the neighboring protein-coding
sequence of a novel missense variant during variant interpreta-
tion, in this study we adopted MTR sliding windows to demon-
strate how those considerations can be formalized without
requiring knowledge of biological structures within a gene. We
showed that this valuable information identifies the important re-
gions of genes, where clinically relevant missense variants are
more likely to be found.

The resolution permitted by currently available standing var-
iation data limits the window size that can be applied in calculat-
ingMTR estimates. For the current ExAC v1 and ExAC v2 samples,
a window of 31 codons captured on average 11 and 16 distinct
variants per window, respectively. Overall, a greater number of
MTR slidingwindows 4641 (35%) of the 13,386windows achieved
a FDR < 0.05 when using the ExAC v2 sample compared to ExAC
v1, where this was achieved for 3157 (24%) of the windows
(Supplemental Data S3). As larger reference cohorts emerge,
more windows will have the resolution required to achieve signifi-
cance, and there will also be opportunities to reduce window sizes.
Reduced window sizes will enable better identification of the crit-
ical boundaries andwill also allow thesemeasures to be sensitive to
smaller critical regions, where 31 codonsmight currently be insen-
sitive. Most importantly, with larger reference cohorts, more so-
phisticated approaches to detecting signatures of purifying
selection, such as the RVIS framework (Petrovski et al. 2013;
Gussow et al. 2016), will becomemore amenable to small window
applications and potentially expand into the noncoding sequence
(Petrovski et al. 2015). Although it is some time away (Zou et al.

2016), eventually when enough exomes
have been sampled from a diverse range
of ancestral populations, we can expect
the germline allelic frequency at every
position will begin to reflect a nucleo-
tide-level intolerance estimate.

Like previous illustrations using our
regression-based RVIS (Petrovski et al.
2013; Zhu et al. 2015), we expect the op-
timal use of this regional-based missense
intolerance information will be in com-
bination with variant-level predictions
of deleteriousness. In this study, we eval-
uated the predictive utility of 20 widely
utilized variant-level tools. Understand-
ing where in a specific gene’s score distri-
bution a novel missense variant resides
andwhich tools best capture pathogenic-
ity for a given disease gene have been
practical limitations in relying on bioin-
formatic tools. These considerations are
important given the growing number of
missense prediction tools available (Coo-
per and Shendure 2011; Goldstein et al.
2013). Evaluating the predictive utility
of 20 variant-level tools in a gene-cus-
tomized framework allowed us to empir-
ically determine the informative tools;

for six highly informed epilepsy genes the data also supported in-
tegrating information across two or more tools. For both KCNQ2
and SCN8A, a gene-specific integrated model achieved superior
predictive accuracy compared to its individual components
when applied to independent test data. For the remaining four
genes, themodel predicted the test data as well as the top perform-
ing feature. We did, however, observe stochasticity in the top per-
forming feature for a gene based on differing samples, whereas the
gene-specific model consistently performed as well or better than
the top performing feature. This stochasticity is best demonstrated
by the multiple applications of the SCN2A model. The top per-
forming feature on the training data was FATHMM (AUC= 0.87),
on the original test data it was PolyPhen-2 (AUC = 0.83), and on
the novel test data it was VEST 3.0 (AUC = 0.87). Yet, in all three
data sets, the multivariate gene-specific model did just as well or
better than the top performing component (training data AUC=
0.93; original test data AUC= 0.83; novel test data AUC = 0.88).

This framework has much broader relevance as the same
problems arise for many disease genes. Our initial focus on epilep-
sy is motivated by the fact that epilepsy has a large disease burden,
has a large effect on quality of life, and its genetic architecture has
proved to be highly suited to sequencing approaches, with a large
number of distinct causal variants identified in a growing set of ep-
ilepsy-related genes (Epi4K Consortium and Epilepsy Phenome/
Genome Project 2013, 2017; EuroEPINOMICS-RES Consortium
et al. 2014). In the current study, we present results of applying a
gene-customized framework on 11 genes with epilepsy associa-
tion, althoughwe intend to expand this work to all human disease
genes. As the catalogs of pathogenic variants increase in size, we
will retrain and revalidate this approach based on additional vari-
ants found among evaluated genes.

Although we do not expect empirical-based estimates of re-
gional purifying selection to outperform existing bioinformatic
tools, it is clear that these signals do contribute independent
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�
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Figure 5. The distribution of the GPP scores from the collection of the six gene-specific logisticmodels.
The tallies of missense variants reported per group reflect the number of missense variants in that group
that belong to the six genes for which a multivariate customized logistic model was described in
Supplemental Table S5. Control Group 1 and Qualified Pathogenic were the only two groups used to
fit the gene-specific models. Control Groups 2 and 3 (presumed enriched for benign) as well as the
Unqualified Pathogenic group (presumed enriched for pathogenic variants above that found in popula-
tion controls) represent missense variants not involved in feature evaluation or model fitting. The Mann-
Whitney U tests compare the GPP score distributions from each group to the ExAC v2 Control Group 2
GPP score distribution.
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previously uncaptured information to the prediction of pathogen-
ic variants. Given this demonstrable utility, quantification of re-
gional missense intolerance can be expected to improve over
time. The current results for themost informed epilepsy genesmo-
tivates further evaluation of the GPP scores generated by gene-spe-
cific models as alternatives to relying on individual tools in a
generalized way. Or, at the very least, our findings indicate the in-
dividual tools that have been empirically shown to have, and not
have, predictive utility in a given epilepsy gene.

Methods

Epilepsy gene transcript selection

To ensure that every variant in this study was based on the same
epilepsy gene transcript, we focused on the uniprot canonical tran-
script (http://www.uniprot.org/) (The UniProt Consortium 2017).
We appreciate that true pathogenic variants may affect alternate
exons not captured by the canonical transcript; however, to ensure
consistency we focused on a single transcript per epilepsy gene
throughout this paper:

• SCN1A: [uniprot P35498-1; ENST00000303395; CCDS54413.1;
NM_001165963.1 aka NM_001202435.1]

• KCNQ2: [uniprot O43526-1; ENST00000359125; CCDS13520.1;
NM_172107.3]

• SCN2A: [uniprot Q99250-1; ENST00000283256; CCDS33314.1;
NM_001040142.1 aka NM_021007.2]

• SCN8A: [uniprot Q9UQD0-1; ENST00000354534; CCDS44
891.1; NM_014191.3]

• STXBP1: [uniprot P61764-1; ENST00000373299; CCDS35146.1;
NM_001032221.3]

• SLC2A1: [uniprot P11166-1; ENST00000426263; CCDS477.1;
NM_006516.2]

• GRIN2A: [uniprot Q12879-1; ENST00000396573; CCDS105
39.1; NM_000833.4 aka NM_001134407.2]

• LGI1: [uniprot O95970-1; ENST00000371418; CCDS7431.1;
NM_005097.3]

• KCNT1: [uniprot Q5JUK3-3; ENST00000371757; CCDS35175.2;
NM_020822.2]

• CDKL5: [uniprot O76039-1; ENST00000379989; CCDS14186.1;
NM_001037343.1 aka NM_003159.2]

• PCDH19: [uniprot Q8TAB3-1; ENST00000373034; CCDS554
62.1; NM_001184880.1]

Patient-ascertained pathogenic variant collections

We focused on 11 dominant epilepsy genes (EpiPM Consortium
2015) each reporting at least 20 epilepsy-associated “pathogenic”
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Figure 6. Real-time validation of a SCN2A gene-specific model. (A) SCN2A gene distributions of the GPP scores. All Mann-Whitney U tests compare
groups to ExAC v2 Control Group 2. Control Groups 1–3 are mutually exclusive presumed benign missense variants. Pathogenic qualified, unqualified,
and novel are mutually exclusive presumed pathogenic missense variants. For the bottom two plots of novel variants in Wolff et al. (2017), the “qualified
novel” group is a “de novo” and severe pediatric epilepsy subset of the ‘all novel’ group. (B) ROC curves for the model and individual features accurately
predicting the 52 novel case and 188 Control Group 2 variants. (C–G) Distribution of the model and individual feature scores across all 13,425 possible
SCN2A missense variants (gray) with the median SCN2A score depicted by a dashed black line. Also plotted are the 188 ExAC v2 Control Group 2
(blue), the 52 novel variants from Wolff et al. (2017) (red), and the 40 SCN2A unqualified pathogenic test variants (orange).
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missense variants among the combination of ClinVar (Landrum
et al. 2016) (ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/; accessed
May 1, 2016) and HGMD (Stenson et al. 2003) (hgmd2016.3) da-
tabases (Supplemental Table S1).

Pathogenic variants were selected on the basis of the follow-
ing conditions: for ClinVar, we required the classification to be
“Pathogenic,” “Likely Pathogenic,” or “Likely pathogenic;
Pathogenic”; for HGMD, we required the classification to be
“DM.” For missense variants reported in ClinVar and HGMD,
both had to have consensus pathogenicity claims as described
above. Epilepsy association was defined by keyword matching
ClinVar and HGMD phenotypes with at least one of the following
keywords: seizure, epilepsy, convulsion, Gastaut, spasm, glucose
(for SLC2A1), Ohtahara, west syndrome, encephalopathy, or
Dravet. ClinVar “N/A” or “not provided”were permitted following
review of the text in the corresponding ClinVar report.

For the resulting 1043 variants, two researchers independent-
ly screened the literature associated with the corresponding vari-
ant (or the clinical notes left within the ClinVar page) to identify
variants reported with sufficient segregation support. For the pur-
poses of this study, sufficient segregation support was qualified as
having met one of the following two criteria:

1. There was written evidence that the specific variant arose de
novo (germline or somatic) in the family; or

2. The variantwas accompanied by pedigree support showing that
the variant segregated among all (andmore than three) affected
carriers that were genotyped, and was not present in more than
one of the genotyped unaffected carriers in the pedigree.

Across the 1043 missense variants deposited in the ClinVar/
HGMD variant databases (Supplemental Data S1), 606 were found
to have the segregation support described above (Supplemental
Table S1). The intent of this task was to prune our list of case-ascer-
tained pathogenic-reported variants to the subset that we consider
enriched for clinically relevantmissense variants, based on the lev-
el of segregation evidence accompanying the claims of pathoge-
nicity in literature or via ClinVar (Supplemental Data S1).

Population control variants

To sample from presumed benign missense variation, we used
two large samples of human standing variation with the ExAC
v1 reference sample representing a subset of the ExAC v2 and
gnomAD reference sample (Lek et al. 2016). We systematically
sampled missense variants passing the quality control checks im-
posed by the data set creators and defined threemutually exclusive
groups of control variants:

Control Group 1: N = 1517 singleton missense variants from the
ExAC v1 sample (i.e., only one allele observed among up to
121,412 chromosomes).

Control Group 2: N = 1377 singleton missense variants from the
combined ExAC v2 and gnomAD sample. Since ExAC v2 in-
cludes ExAC v1 samples, we excluded all variants reported at
any frequency in ExAC v1.

Control Group 3: N = 1066 rare (nonsingleton) missense variants
among ExAC v2 and gnomAD with a MAF < 0.05% across each
of the seven ExAC v2 ancestry groups, excluding missense vari-
ants contained in Controls Groups 1 or 2.

We focused on singleton and rare missense variants to best
match our control variants to the site frequency spectrum (SFS)
commonly observed for epilepsy patient–ascertained variants
(Epi4K Consortium and Epilepsy Phenome/Genome 2017).
Moreover, focusing on the lowest end of the available SFS helps en-
sure that the variants we used as controls are unlikely to have con-

tributed to the training of the various pre-ExAC bioinformatic
tools that we evaluated. As with the case variants, we acknowledge
that some of these control-ascertained variants might contribute
to epilepsy risk; however, we expect such a false negative rate to
be low, as also supported by earlier epilepsy sequencing studies
(Epi4K Consortium and Epilepsy Phenome/Genome 2017).

The Missense Tolerance Ratio (MTR)

To illustrate the landscape ofmissense tolerance, we used aggregat-
ed variant data from two publicly available samples of human
standing variation to highlight regions within genes that reflect
preferential depletion of missense variation given the total varia-
tion observed. The first data set ExAC v1 (release 0.3.1) represents
a sample of 60,706 unrelated individuals. The seconddata set is the
recently released ExAC v2 and gnomAD combined data (version
2.0), representing a sample of 138,632 unrelated individuals (Lek
et al. 2016).

The dN/dS score was introduced to enable detection of selec-
tive evolutionary pressure in interspecies comparisons (Kimura
1977). The dN/dS is like an odds ratio, and by construction, its esti-
mates can be imprecise when dN or dS are small, which was usually
not the case in the historical context of interspecies comparisons
over whole genes. To accommodate the skewed distribution near
dN/dS = 0, the log of dN/dS is often adopted. Here, we assessed mis-
sense depletion using a sliding window approach in which the ob-
served counts of missense (Dn) and synonymous (Ds) variants can
be limited by resolution in a window. In this context, we found
that log(dN/dS) becomes volatile near zero and is undefined if ei-
therDn orDs is zero. For this reason, we adopted amodified formu-
lation that uses similar elements and is intuitive in its own right,
yet simpler than log(dN/dS).

A 31-codon (i.e., 93 protein-coding nucleotides) sliding win-
dow was applied to the protein-coding sequence of human genes
to estimate the Missense Tolerance Ratio (MTR), per window:

MTR = [missense[obs]/(missense[obs] + synonymous[obs])]
[missense[pos]/(missense[pos] + synonymous[pos])] ,

where the numerator ofMTRpresents the observed proportion in a
given window of missense variants among the missense and syn-
onymous variants combined. We scaled this by the more stable
denominator, which is the same proportion but computed not
from the observed variants, but from the set of all possible mis-
sense and synonymous variants in the window. We found that
this formulation remains highly correlated with log(dN/dS)
(Supplemental Fig. S11) while avoiding problems when either
Dn = 0 or Ds = 0.

The expected proportion of missense variants in a given pro-
tein-coding window was calculated by annotating all possible var-
iants with VEP (Ensembl GRCh37 release 85, July 2016) and
assuming all events were equally possible. We focused on the pro-
tein-coding missense and synonymous single-nucleotide variants
(SNVs) within the isoforms defined above, under section Epilepsy
gene transcript selection. The observed proportion of missense
variation for the same protein-coding window was calculated by
focusing on the missense and SNVs judged to pass the quality cri-
teria assigned by the database creators of ExAC and based on anno-
tations from the same isoforms as described in Epilepsy gene
transcript selection. Thus, for any given 31-codon sliding window,
we calculated the proportion of observedmissense variants report-
ed in the ExAC public databases given the total sum of observed
missense and synonymous variants reported in that window. A
summary of the observed variation among the combined ExAC
v2 and gnomAD database is provided for each of the 11 epilepsy
genes (Supplemental Table S3).
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By construction, each codon’s MTR estimate represents the
preferential depletion of missense variants at the index codon
and the 15 codons before and after the index codon. The first
and last 15 codons of a transcript reflect smaller window sizes
(Supplemental Data S3). Importantly, a sliding window approach
was adopted to allow our estimates to be entirely independent of
existing biological boundaries, such as exons, conserved domains,
and functional domains. The window size of 31 codons captured a
median of 10 variants perwindow (mean 10.6 ± 5.6 variants) based
on the ExAC v1 release 0.3.1 data. This window size subsequently
captured amedian of 15 variants per window (mean 16.1 ± 7.3 var-
iants) based on the larger combined ExAC v2 and gnomAD sample
(release 2.0). As expected, the number of variants per window
when comparing the ExAC v1 and the ExAC v2 databases was
highly correlated (Pearson’s r = 0.88) (Supplemental Data S3).

Although the MTR is not sensitive to variability in sequenc-
ing coverage, regions with lower coverage should be interpreted
with caution given the reduced sample contributing to those cor-
responding MTR window estimates. For this reason, we also plot-
ted the proportion of the ExAC samples that reported at least 10-
fold coverage across each codon (Supplemental Data S3). We also
adopted a Binomial exact test to test for a deviation from MTR =
1 at each sliding window and further adjusted for the study-wide
false discovery rate (FDR) by using the Benjamini-Hochberg proce-
dure (Supplemental Data S3). OurMTR viewer is publicly available
and currently supports Ensembl v85 transcripts (http://mtr-viewer
.mdhs.unimelb.edu.au). The website accepts as input either indi-
vidual transcript IDs or displays the canonical transcript when a
HGNC gene symbol is provided.

The MTR landscapes of human-lineage purifying selection
can be biologically interesting for at least three additional reasons:
(1) they highlight that even within known functional domains
there is variability in missense intolerance; (2) we observed diver-
gence of intolerant regions among highly homologous SCN1A,
SCN2A and SCN8A genes (Fig. 1 G–I), suggesting those could be re-
gions within the homologs that are important to their distinct
functional roles in the central nervous system and opening up
new scientific questions about the functional and clinical impor-
tance of these regions; and (3) conversely, we observed that
many of the troughs across the landscapes of these three sodium
channel genes overlap, reinforcing those critical functions as being
maintained by purifying selection across the gene family.

We also compared MTR to known subregional intolerance
scores across the 11 genes and found low correlation with
subRVIS (Pearson’s r2 of 0.008 [CDD] and 0.009 [exon]) (Gussow
et al. 2016) and the preprint obs_exp constraint estimates
(Pearson’s r2 of 0.153) (Samocha et al. 2017). In doing this, we
also found that the 11 epilepsy genes comprised more distinct
MTR estimates (n = 7708), compared to these other boundary-
based regional intolerance estimates: subRVIS-exon (n = 33),
subRVIS-CDD (n = 34), and preprint obs_exp regional constraint
score (n = 24 distinct units, including three genes with a nonvari-
able estimate). Supplemental Figure S12 comparisons illustrate ex-
tra information that MTR estimates capture, highlighting that
even within known functional domains, exonic units, or other
large divisions, there is important variation in missense
intolerance.

Annotating the 88,865 possible missense variants

We generated all possible missense variants that could affect the
canonical transcripts (as defined earlier) of the 11 studied epilepsy
genes. This resulted in 88,865 possible missense variants that we
subsequently annotated using 31 various bioinformatic tools
based on the following three variant annotation platforms:

• PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) was used
to derive predictions from both HumDiv and HumVar
PolyPhen-2models focused on the Consensus Coding Sequence
(CCDS) transcripts.

• The Ensembl Variant Effect Predictor (VEP; accessed December
2016) was used to annotate missense variants with 24 bioinfor-
matic tools specific to the canonical transcripts. To standardize
all scores, we adopted the rankscore annotations from the
dbNSFP database version 3.2c (https://drive.google.com/file/d/
0B60wROKy6OqcUl9NbkFRdVZlQzQ/view).

• Finally, we used the Combined Annotation Dependent Deple-
tion (CADD v1.3; http://cadd.gs.washington.edu/score) plat-
form to extract five additional features for the missense
variants: GC and CpG (percent in a window of ±75 bp), Pri-
mate-based PhastCons and PhyloP scores, and the Grantham
score.

We could not annotate the X Chromosome genes CDKL5 and
PCDH19 for five features (Eigen-PC-raw_rankscore, Eigen-raw_
rankscore, H1-hESC_fitCons_score_rankscore, HUVEC_fitCons_
score_rankscore, and integrated_fitCons_score_rankscore), so we
only evaluated these five features for the autosomal genes. After
excluding these five features for the two X Chromosome genes,
we hadmissing data for 2276 (0.08%) of all 2,683,040 annotations
(Supplemental Data S4). We imputed these missing annotations
by taking the median score of the successfully annotated missense
variants within the corresponding gene.

Identifying highly correlated in silico features

We used the nearZeroVar function within the R caret package to
identify features achieving near-zero variance. We defined near-
zero variance using a freqCut of 80/20 (i.e., 4 as the cutoff for
the permitted ratio of the most common value to the second
most common value in the feature) and uniqueCut of 5 (i.e., the
cutoff for the percentage of distinct values available out of the total
74,510 autosomal missense variants). Through this step, we found
that the phastCons20way_mammalian_rankscore (freqCut = 5.2%
and percent unique = 1.2%) and phastCons100way_vertebrate_
rankscore (freqCut = 75.3% and percent unique = 1.1%) did not
meet the two requirements and were not included in feature im-
portance evaluations.

We also generated a correlation matrix using the 31 features
(Supplemental Fig. S4) and adopted the FindCorrelation function
from the R caret package to identify features with high pairwise
Pearson’s r correlations, defined as an absolute value >0.75 (de-
fault). We also set the FindCorrelation exact parameter to equal
true. Thus, when a pairwise correlation with an absolute value
>0.75 was identified, the function selected which feature to re-
move by considering the mean of the absolute values of all pair-
wise correlations for both features, and it removed the feature
with the larger mean absolute correlation across the matrix.
Adopting the exact = true ensures that this function reevaluated
the average absolute correlations at each step; thus, the average ab-
solute mean did not consider earlier features already eliminated
due to high correlation. Through this step, we identified and re-
moved the following nine features from subsequent feature impor-
tance evaluations: CpG (>|0.75| with CG content); PP2_Hvar (>|
0.75| with PP2_Hdiv, Condel and Eigen_rs); Condel (>|0.75| with
PP2_Hvar, CADD and Eigen_rs); EigenPC_rs (>|0.75| with CADD,
Eigen_rs and phyloP_ver_rs); Eigen_rs (>|0.75| with PP2_Hdiv,
PP2_Hvar, Condel, CADD, EigenPC_rs and MutationAssessor_rs);
MetaLR_rs (>|0.75| with FATHMM_rs and MetaSVM_rs);
MetaSVM_rs (>|0.75| with FATHMM_rs and MetaLR_rs);
phyloP_ver_rs (>|0.75| with EigenPC_rs and fathmm_MKL_rs);

Predicting disease-potential within epilepsy genes
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and integrate_fitCons_rs (>|0.75| with H1_hESC_fitCons_rs and
HUVEC_fitCons_rs).

Subsequently we included the MTR estimate from the ExAC
v1 sample to the correlation matrix to address an interesting ques-
tion about whether any existing bioinformatic tools correlated
with the novel empirical estimates of regional missense depletion
in standing variation data (Supplemental Data S1; Supplemental
Fig. S4).

Using the Boruta algorithm to assess feature importance

In the previous steps, we removed two features due to near-zero
variance and an additional nine due to high correlations
(Pearson’s |r| > 0.75). We then adopted the Boruta algorithm (R
package Boruta) for random forest classifiers to evaluate which of
the 20 remaining bioinformatic tools are predictive of pathogenic-
ity in a given gene (Kursa and Rudnicki 2010). The Boruta algo-
rithm adopts an “all-relevant” feature importance assessment
using a robust permutation-based approach to identify features
that are in some circumstances relevant to the classification out-
come of interest, rather than attempting to achieve aminimal sub-
set of features. Boruta judges importance by a feature’s ability to
outperform randomized instances of all the studied true features
(referred to as shadow features). Shadow features are obtained for
all 20 bioinformatic features by randomly shuffling each original
feature’s values across the observations, repeatedly. Informative
features are then defined as features with a random forest Z-score
distribution above that of the highest performing randomized fea-
ture (i.e., max shadow feature) (Kursa and Rudnicki 2010). The Z-
scores reflected the mean decrease accuracy measure in R’s
randomForest function. Within the R package, we set our seed to
be 15; to increase our confidence, we set ourmaxRuns to represent
1000 random forest runs (an order of magnitude greater than the
default setting) and used the R randomForest default settings of
ntree = 500 and mtry = 4. Thus, for a given gene, only the features
that consistently achieve higher importance scores (Z-scores) than
the Z-score distribution from the best-performing (max) shadow
feature across all the random forest runs were selected as informa-
tive (Fig. 4).

We sought to minimize circularity in our feature evaluations
by relying only on ExAC v1 and ExAC v2 singleton and rare (MAF
< 0.05%) variants that would not have had major contribution to
the training sets of these features. Taking themost consistently top
ranked feature VEST 3.0, in its training it adopted missense vari-
ants with a minor allele frequency >1% among the Exome
Sequencing Project (ESP6500) and 47,000 HGMDpathogenicmis-
sense variants (Carter et al. 2013). Although our study design
sought to alleviate concerns about the total impact of circularity af-
fecting feature evaluations, this effect remains an important con-
sideration (Grimm et al. 2015).

Deriving a gene-specific prediction of pathogenicity (GPP) model

To assess whether integrating multiple sources of information can
provide an improved prediction of missense variant pathogenicity
for epilepsy genes, we generated logistic regressionmodels, one for
each gene, to distinguish the 606 qualified pathogenic variants (y
= 1) from the ExAC v1 Group 1 control missense variants (y = 0).

For the seven epilepsy genes of which the ExAC v1 MTR
achieved P < 0.0045 (Table 1), we included the ExAC v1 MTR as
the initial predictor.We then added that gene’s top ranking feature
(Supplemental Table S5) and computed the Akaike information
criterion (AIC) for the model, AICi. The model grew by including
the next ‘highly informative’ feature, AICi+1, until the addition
of additional features no longer significantly reduced information

loss (P > 0.05) compared to the previous model (Supplemental
Table S7). Given the currently available samples of case and con-
trol missense variants, the final model included only one feature
for genes GRIN2A, KCNT1, LGI1, SLC2A1, and STXBP1. For the re-
maining six epilepsy genes, we fit the following logistic regression
model:

logit[Pr(Y = 1)] = b0 + b1X1 + · · · + biXi,

where β0 is the intercept coefficient, and βi is the logistic regression
coefficient for the corresponding feature score, Xi. The multivari-
ate logistic regression models for the six epilepsy genes are provid-
ed in Supplemental Table S8.

We also generated another set of pathogenicity-predicted
probabilities by substituting the ExAC v1 MTR estimates with
the more informed ExAC v2 MTR estimates in the logistic models
(Supplemental Data S4). Comparing the two models, we observed
high correlation between the predicted probabilities of the result-
ing 60,121 scored missense variants (Pearson’s r = 0.94; P < 1 ×
10−16) (Supplemental Data S4).
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