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ABSTRACT

Development of new potent, safe drugs to treat Mycobacteria has proven to be challenging, with 

limited hit rates of initial screens restricting subsequent development efforts. Despite significant 

efforts and evolution of Quantitative Structure-Activity Relationship (QSAR) as well as machine 

learning-based models for computationally predicting molecule bioactivity, there is an unmet need 

for efficient and reliable methods for identifying biologically active compounds against 

mycobacterium that are also safe for humans. Here we have developed mycoCSM, a graph-based 

signature approach to rapidly identify compounds likely to be active against bacteria from the genus 

Mycobacterium, or against specific Mycobacteria species. mycoCSM was trained and validated on 

eight organism-specific and for the first time a general Mycobacteria data set, achieving correlation 

coefficients of up to 0.89 on cross-validation and 0.88 on independent blind tests, when predicting 

bioactivity in terms of Minimum Inhibitory Concentration (MIC). In addition, we also developed a 

predictor to identify those compounds likely to penetrate in necrotic tuberculosis foci, which achieved 

a correlation coefficient of 0.75. Together with a built-in estimator of the Maximum Tolerated Dose in 

humans, we believe this method will provide a valuable resource to enrich screening libraries with 

potent, safe molecules. To provide simple guidance in the selection of libraries with favourable anti-

Mycobacteria properties, we have made mycoCSM freely available at: 

https://biosig.unimelb.edu.au/myco_csm.
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INTRODUCTION

Mycobacteria are a family of gram-positive bacilli, that are the causative agents of tuberculosis 

(Mycobacterium tuberculosis), leprosy (Mycobacterium leprae), and serious complications in cystic 

fibrosis (Mycobacterium abscessus). These infections are often hard to treat, in particular due to their 

unique cell wall, with full treatment regimens being time consuming, costly and associated with a 

range of side effects 1. This has been further complicated by the spread of resistance against the major 

treatments, and that only a few antibiotics with new modes of action have been approved in the last 

40 years 2-4. There is, therefore, an increasing necessity for new and more efficient chemotherapies 

active against Mycobacteria.

Towards this, there have been coordinated efforts to perform and release the results from phenotypic 

screens and drug development efforts, leading to the accumulation of a large number of experimental 

data points of active and inactive compounds for different Mycobacteria species. However, most 

screening efforts are generally associated with a low hit-rate, and can only screen a fraction of the 

available chemical space. Further, it can be challenging to develop these molecules into potent, safe 

chemotherapies. The ability to rationally identify safe but potentially effective molecules 

computationally would significantly reduce development time and costs. 

A few efforts to identify molecules likely to be effective against Mycobacterium tuberculosis have 

shown that such an approach could be effective, but have been limited by qualitative, QSAR and drug 

repurposing approaches 2, 5-9. Particularly QSAR models have been focused on compound classes. 

Ragno and colleagues analysed the efficacy of antifungal pyrrole derivatives as antitubercular agents, 

deriving QSAR  and molecular field analysis models6, while Sivakumar and colleagues, have focused on 

developing QSAR models for  chalcones and flavonoids7. More broadly applicable models are 

necessary. One example is the multitasking model based on quantitative-structure biological effect 
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relationships (mtk-QSBER) that enabled identification of antimycobacterial activity as well as their 

pharmacokinetics profile9.

Previously we have shown that the application of graph-based signatures can be a very efficient way 

of representing molecular 3D space in order to accurately predict pharmacokinetic properties 10, 11 and 

the effects of mutations on protein structure and function 12-22. Using this concept, here we developed 

a new machine learning method, mycoCSM, that for the first time can accurately predict molecules 

that are likely to be active against multiple Mycobacteria species, while remaining safe and well 

tolerated. Figure 1 depicts the general methodological workflow for mycoCSM.

RESULTS AND DISCUSSION

Correlating molecular properties with biological activity

A large and diverse data set of experimental Minimal Inhibitory Concentration (MIC) for molecules 

against 8 species of the genus Mycobacteria was collected from the literature, including 

Mycobacterium avium, Mycobacterium bovis, Mycobacterium fortuitum, Mycobacterium 

intracellulare, Mycobacterium kansasii, Mycobacterium phlei, Mycobacterium smegmatis, and 

Mycobacterium tuberculosis.  This led to experimental MIC values for over 15,000 unique compounds 

across different organisms (Table 1). Figure S1 depicts the distribution of general physicochemical 

properties for molecules with anti-Mycobacteria activity, as well as the distribution of their biological 

activity measurements. Most of the molecules conformed to the Lipinski ‘Rule of 5’ 23, perhaps 

reflecting a bias in the original screening libraries.

To better understand what makes a good hit while searching for anti-Mycobacterial molecules, we

initially evaluated whether any basic molecular properties (whose distribution was depicted in Figure 

S1) correlated strongly with biological activity. No strong correlation between molecular properties 

and biological activity was identified (Pearson’s correlation of up to 0.27, data not shown), reflecting 
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a need for more sophisticated ways to model small-molecule geometry and chemistry. Interestingly, 

however, the top 10% of most active molecules (MIC < 1 µM) tended to have a slightly larger number 

of hydrogen bond acceptors, rings and a larger topological polar surface area (TPSA) (p-value < 0.001, 

using two-sample Kolmogorov-Smirnov test). This may represent the increasing molecular complexity 

needed in the evolution of hit to lead type molecules.

Predicting organism-specific activity

Predictive models were trained using supervised learning algorithms for each of the eight 

Mycobacterium species, using graph-based signatures and RDkit descriptors (Table S1) as evidence. 

The best performing models, after greedy forward feature selection, achieved Pearson’s correlation 

coefficients during cross validation ranging from 0.80 (for M. bovis) to 0.89 (for M. fortuitum) (Table 

2; Table S2). Figure 2 depicts the distribution of predicted vs. experimental MIC values per model for 

10-fold cross validation, also highlighting the performances on 90% of the data (after 10% outlier 

removal). The models were further validated using independent blind tests (Figure S2). We observed, 

for every model, a consistent performance between cross validation and blind tests, indicating model 

generalization and reducing risk of overfitting. During blind tests, correlations ranged from 0.76 (M. 

smegmatis) and 0.88 (M. avium) (Table 2). Within our dataset we identified around 4,000 compounds 

with multiple separate experimental MIC measurements against M. tuberculosis. The Pearson’s 

correlation between these separate experimental measurements was 0.78, suggesting that the 

predictive performance of our final models is comparable to the level of experimental variation 

observed, and the theoretical maximal achievable predictive performance.

We further investigated the performance of organism-specific methods on molecules that do not 

conform to Lipinski’s rule of 5 (Ro5). Despite the bias in the training set towards Ro5 molecules, we 

saw no bias towards drug-like molecules, with similar performances between Ro5 (r = 0.80) and non-

Ro5 molecules (r = 0.83) for the M. tuberculosis predictor. 
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To the best of our knowledge this is the first attempt at developing Mycobacterium species-specific 

bioactivity predictors, apart from qualitative predictions of M. tuberculosis activity 5, 24. As mycoCSM 

quantitatively predicts bioactivity of compounds, allowing ranking and prioritization, performance 

comparison with other methods was done on a classification-by-regression manner. Prathipati et al. 

(2008) used an M. tuberculosis MIC < 5µM as a cutoff for labelling compounds as active, reporting an 

accuracy of up to 0.87 on their bayesian model. On the same data set, Yu and Wild (2012) reported a 

rule-based classification system, which achieved an F1-score of 0.74. By using the same cutoff, our 

model obtained an accuracy of 0.88 and F1-score of 0.72, comparable to previously reported 

performance.

Predicting drug penetration in M. tuberculosis

The effectiveness of drugs to treat M. tuberculosis has been linked to their ability to penetrate the 

cellular and necrotic regions of granulomas 25. Poor drug penetration has been associated with poor 

diffusion through the caseous center, due to high protein binding in the caseum. Favourable caseum 

distribution is considered an important antitubercular drug property, therefore, in addition to 

predicting bioactivity, a model for predicting drug penetration in M. tuberculosis lesions was also 

developed. Using a data set of 279 compounds with experimentally characterised caseum distribution 

profiles, we investigated whether any molecular properties were associated with better drug 

penetration. We identified three main physiochemical properties that were correlated with 

favourable distribution. Compound molecular weight and surface were moderately predictive of 

caseum binding (r = -0.50), with larger molecules presenting lower fractions unbound and hence 

higher levels of caseum binding, while logP was also mildly predictive (r = -0.60), with more hydrophilic 

compounds displaying better distribution. We also identified a negative correlation between drug 

penetration and the negative logarithm of the MIC (r = -0.64, Figure S3), consistent with current 
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thoughts that more potent compounds (low MIC) are more likely to bind to caseum (low fraction 

unbound), enabling them to better penetrate and distribute into caseum. 

This data set was then used to build a model capable of accurately predicting the caseum fraction 

unbound (%). mycoCSM achieved Pearson’s correlation coefficient of up to 0.86 on 10-fold cross 

validation when predicting caseum fraction unbound, which was consistent with performance on 

other validation schemes (0.85 for 5-fold and 0.80 for 20-fold cross validation). The correlation 

increases to 0.95 when 10% of outliers are removed (Figure 3). The predictor was further evaluated 

on a blind test, achieving a correlation of r=0.90, consistent with cross-validation and comparable to 

previous efforts to predict caseum binding 26.

Building a general Mycobacteria predictor

Comparison of the molecules within each dataset revealed that there was a significant overlap of 

molecules with experimental MIC’s in different species, with 64% of molecules tested in M. avium, M. 

bovis, M. fortuitum, M. intracellulare, M. kansasii, M. phlei and M. smegmatis, also tested in M. 

tuberculosis (Figure 4A). Interestingly, we observed a high correlation between MIC’s for the same 

molecule between these different organisms (r=0.71, Figure 4B), which supported the feasibility of 

developing a general anti-Mycobacterium predictor. A genus level Mycobacterium training/test set 

was therefore also curated by combining all compounds with experimental MIC against any 

Mycobacterium, and averaging the MIC values for common molecules across species.

The M. tuberculosis model was used to predict the activities of all non-redundant compounds with 

experimentally measured MICs against the remaining 7 species. These predictions were correlated 

against the experimental measurement for that organism, revealing correlations ranging from 0.43 to 

0.81. This provided further confidence in developing a general anti-Mycobacteria predictor. Building 

upon the 8 organism-specific predictors and data sets, we developed a general anti-Mycobacterium 
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predictor. mycoCSM achieved a correlation of 0.83 (RMSE of 0.52) on cross-validation (Figure 2), which 

was consistent with performance on an independent test set, 0.80 (RMSE of 0.55) (Figure S2). We 

further evaluated this final general predictor using MIC’s of unique compounds against 

Mycobacterium abscessus, Mycobacterium chelonae, Mycobacterium marinum, and Mycobacterium 

vaccae, for which there was insufficient data to build species specific models. We observed 

correlations up to 0.89, demonstrating generalisation capabilities of our final model. 

Myco-CSM Web server 

Myco-CSM has been made available through an easy-to-use web interface at 

http://biosig.unimelb.edu.au/myco_csm, allowing users to submit molecule data sets for quick 

prioritization and screening (Figure 5). Users have the option to predict either organism-specific or 

general anti-Mycobacterial activity by submitting single molecules or batch-processing multiple 

molecules by providing molecules as SMILES strings. Users also have the option to calculate 

pharmacokinetic properties of selected molecules using pkCSM 10. 

CONCLUSIONS

Here we present mycoCSM, a machine-learning based method for predicting safe, bioactive 

compounds for Mycobacteria. mycoCSM is capable, for the first time, of quantitatively predicting 

biologically active molecules for 8 Mycobacterium species as well as predicting molecules likely to be 

active across different species within the genus. mycoCSM also accompanies an estimator for 

Maximum Tolerated Dose in human, enabling the selection and enrichment of not only active but also 

safe compounds in screening libraries, and a model capable of predicting drug penetration in 

tubercular lesions. We have applied our method to the ChEMBL database to provide a rapid evaluation 

of commercially available compounds. Both the data sets used to train predictive models and ChEMBL 

screening results have been made available through a user-friendly web interface at: 

https://biosig.unimelb.edu.au/myco_csm. We believe mycoCSM would be an invaluable tool for 
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screening strategies in Mycobacteria and a platform from which similar initiatives for other relevant 

pathogens could be based upon.

METHODS

Data

Experimental Minimal Inhibitory Concentrations (MIC) values, given in Molar, for the Mycobacterium 

genus were collected from TIBLE 27 and ChEMBL 28 databases, comprising 19,684 experimental results 

against 8 distinct species. The penetration of antibiotics in necrotic tuberculosis lesions was also 

evaluated using a dataset of 279 compounds with experimentally measured avascular caseum binding 

and diffusion 26. This data was used to build training and test datasets for training organism-specific 

predictive models as regression tasks as well as a general Mycobacterium predictor.

The logarithm of MIC100 values were averaged per molecule (based on ChEMBL identifiers) for each 

species, in order to generate organism-specific training/test sets containing at least 200 unique 

molecules. Each data set was divided into blind test (10% or at least 40 molecules) and training (the 

remaining 90% of the data). The resulting data sets and respective number of molecules are shown in 

Table 1.

Graph-based Signatures and Feature Engineering

Graphs are versatile mathematical abstractions to model entities and their relations, and have been 

proven intuitive and powerful tools for modelling small-molecule physicochemical properties. We 

have previously proposed the concept of graph-based signatures for modelling protein structures and 

the interactions with its partners as graphs and small-molecules 11-16, 18-22. These have been successfully 

used as evidence to train and test a range of machine-learning based models, including the prediction 

of pharmacokinetic and toxicity profiles via the method pkCSM 10. Here we adapted these signatures 

to model small-molecule activity against Mycobacteria (Supplementary Info). The main components 
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of the graph-based signatures are (i) distance-based patterns, represented as cumulative distribution 

functions of atom distances labelled based on their respective physicochemical properties 

(pharmacophores) and (ii) complementary  physicochemical properties calculated using the RDKit 

cheminformatics library (Table S1) 29. 

Identifying the best combination of attributes to train a predictive model is a challenging optimisation 

problem. To reduce noise and dimensionality, we employed feature selection via a Forward Greedy 

approach, by initially considering features individually and iteratively fixing the best performing ones. 

The main rationale behind applying this heuristic is its simplicity and relative efficiency (limited to 

generating a quadratic combination of features). It has also been shown that greedy feature selection 

improves generalisation performance, particularly for regression methods30. 

Model Selection and Validation

Several supervised machine learning methods for regression available on the scikit-learn Python 

library were assessed, including Random Forest, Extra Trees, Gaussian Process, Support Vector 

Machines, Gradient Boosting and XGBoost (Table S2). The best performing model was selected based 

on Pearson’s correlation coefficient and Root Mean Squared Error (RMSE). Performance of predictive 

models was assessed under a 10-fold cross validation procedure with 10 bootstrap repetitions and 

using non-redundant blind tests. To validate the general predictor, organism-specific blind tests were 

compiled using MIC values available for other organisms (when from 50-200 unique molecules were 

available). Organisms with less than 50 molecules were combined within a single blind test (MIC values 

were averaged per molecule in both cases). Performance was also assessed on 90% of the data to 

investigate the effect of potential outliers. These were defined as the 10% worst predicted data points, 

(i.e., the points further away from the regression line). For all data sets, the ensemble method Extra 

Trees was the best performing algorithm. 
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Web server 

The web server front-end was developed using Bootstrap framework version 3.3.7 and the back-end 

was based on Python 2.7 via the Flask framework version 0.12.3 on a Linux server running Apache.
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TABLES

Table 1. Organism-specific and total unique compounds used to train and test myoCSM compiled 

based on ChEMBL and TIBLE databases.

Organism #Molecules

(train)

#Molecules

(blind test)

M. avium 1,007 112

M. bovis 250 40

M. fortuitum 514 57

M. intracellulare 329 40

M. kansasii 900 100

M. phlei 190 40

M. smegmatis 1,903 212

M. tuberculosis 12,591 1400

Total unique compounds 14,189 1577
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Table 2. Performance of the final mycoCSM models across training and non-redundant test sets.

CV Validation

Pearson Kendall Spearman RMSE Pearson Kendall Spearman RMSE

M. avium 0.88 0.71 0.87 0.38 0.88 0.75 0.88 0.40

M. bovis 0.80 0.60 0.79 0.62 0.81 0.54 0.72 0.61

M. fortuitum 0.89 0.61 0.78 0.44 0.80 0.54 0.72 0.55

M. intracellulare 0.85 0.69 0.86 0.41 0.88 0.64 0.80 0.39

M. kansasii 0.87 0.70 0.87 0.42 0.83 0.66 0.84 0.45

M. phlei 0.85 0.68 0.86 0.44 0.79 0.64 0.81 0.60

M. smegmatis 0.84 0.64 0.81 0.52 0.76 0.53 0.70 0.56

M. tuberculosis 0.83 0.63 0.82 0.52 0.82 0.63 0.81 0.53

Mycobacterium 0.83 0.64 0.81 0.52 0.80 0.61 0.79 0.55
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FIGURES

Figure 1. mycoCSM workflow. The developed method is composed of four main stages. During Data 

Collection, small molecule activity (in terms of Minimum Inhibitory Concentration) data was collected 

from the literature for eight different Mycobacteria species, in addition to drug penetration for M. 

tuberculosis. During Feature Engineering, two classes of features were derived: (i) graph-based 

signatures that aim to describe both small molecule geometry and physicochemical properties and (ii) 

general molecules properties and pharmacophores. These were then used as evidence to train and 

test predictive models via supervised learning. Models' performance was optimized using greedy 

feature selection. Finally, the best performing models have been made available through an easy-to-

use web interface, also incorporating a toxicity filter for Maximum Tolerated Dose in Humans, allowing 

users to filter safer compounds. 
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Figure 2. Performance of mycoCSM on cross validation. Scatter plots between experimental and 

predicted MIC values given in log10(Molar) for each of the eight organism-specific models as well as 

the general Mycobacteria model are shown. Pearson’s correlation coefficient (r) are shown for each 

plot (in black for 100% of the data and in red for 90% of the data, after 10% outlier removal).
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Figure. 3. Performance of mycoCSM on predicting compound penetration in tubercular lesions. The 

graphs present scatter plots of experimental and predicted caseum fraction unbound (as a percentage 

%) assessed under 10-fold cross-validation (left-hand side) and blind test (right-hand side). mycoCSM 

presented consistent performance on all experiments. Pearson’s correlation coefficient (r) are shown 

for each plot (in black for 100% of the data and in red for 90% of the data, after 10% outlier removal). 
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Figure 4. Comparison of compounds tested against different Mycobacteria species. (A) Venn diagram 

showing the overlap of molecules with experimental MICs in M. tuberculosis and the seven other 

species. (B) Correlation of experimental MICs between M. tuberculosis and the seven other species.
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Figure 5. mycoCSM webserver interface. (A) shows the submission page for mycoCSM. Users have 

the option to either provide a compound represented as a SMILES string or a set of compounds as a 

SMILES file, for assessing multiple molecules. (B) shows the results page for multiple molecule 

submission.  Results are presented in tabular format, including predic-tions for all 8 organism-

specific models, the general Mycobacteria model and drug penetration. Maximum Recommended 

Tolerated Doses (MRTD) in human are also calculated using pkCSM and presented. Users have also 

the option to calculate other pharmacokinetic and toxicity properties of compounds of interest using 

the pkCSM platform.
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Fig. 2. Performance of mycoCSM on cross validation. Scatter plots between experimental and predicted MIC 
values given in log10(Molar) for each of the eight organism-specific models as well as the general 

Mycobacteria model are shown. Pearson’s correlation coefficient (r) are shown for each plot (in black for 
100% of the data and in red for 90% of the data, after 10% outlier removal). 
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Fig. 3. Performance of mycoCSM on predicting compound penetration in tubercular lesions. The graphs 
present scatter plots of experimental and predicted caseum fraction unbound (as a percentage %) assessed 

under 10-fold cross-validation (left-hand side) and blind test (right-hand side). mycoCSM presented 
consistent performance on all experiments. Pearson’s correlation coefficient (r) are shown for each plot (in 

black for 100% of the data and in red for 90% of the data, after 10% outlier removal). 
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Fig. 4. Comparison of compounds tested against different Mycobacteria species. (A) Venn diagram showing 
the overlap of molecules with experimental MICs in M. tuberculosis and the seven other species. (B) 

Correlation of experimental MICs between M. tuberculosis and the seven other species. 
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Fig. 5. mycoCSM webserver interface. (A) shows the submission page for mycoCSM. Users have the option 
to either provide a compound represented as a SMILES string or a set of compounds as a SMILES file, for 
assessing multiple molecules. (B) shows the results page for multiple molecule submission.  Results are 

presented in tabular format, including predic-tions for all 8 organism-specific models, the general 
Mycobacteria model and drug penetration. Maximum Recommended Tolerated Doses (MRTD) in human are 
also calculated using pkCSM and presented. Users have also the option to calculate other pharmacokinetic 

and toxicity properties of compounds of interest using the pkCSM platform. 
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