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Kinases play crucial roles in cellular signalling and biological processes with their dysregulation associ-
ated with diseases, including cancers. Kinase inhibitors, most notably those targeting ABeLson 1 (ABL1)
kinase in chronic myeloid leukemia, have had a significant impact on cancer survival, yet emergence of
resistance mutations can reduce their effectiveness, leading to therapeutic failure. Limited effort, how-
ever, has been devoted to developing tools to accurately identify ABL1 resistance mutations, as well as
providing insights into their molecular mechanisms. Here we investigated the structural basis of ABL1
mutations modulating binding affinity of eight FDA-approved drugs. We found mutations impair affinity
of type I and type II inhibitors differently and used this insight to developed a novel web-based diagnostic
tool, SUSPECT-ABL, to pre-emptively predict resistance profiles and binding free-energy changes (DDG)
of all possible ABL1 mutations against inhibitors with different binding modes. Resistance mutations
in ABL1 were successfully identified, achieving a Matthew’s Correlation Coefficient of up to 0.73 and
the resulting change in ligand binding affinity with a Pearson’s correlation of up to 0.77, with perfor-
mances consistent across non-redundant blind tests. Through an in silico saturation mutagenesis, our tool
has identified possibly emerging resistance mutations, which offers opportunities for in vivo experimen-
tal validation. We believe SUSPECT-ABL will be an important tool not just for improving precision med-
icine efforts, but for facilitating the development of next-generation inhibitors that are less prone to
resistance. We have made our tool freely available at http://biosig.unimelb.edu.au/suspect_abl/.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Kinases can modulate protein activities through phosphoryla-
tion, acting as an essential on/off switch in many cellular signalling
pathways. In chronic myelogenous leukemia (CML), ABeLson 1
(ABL1) kinase is constitutively overactivated as a consequence of
chromosomal translocation with the breakpoint cluster region,
and the induced abnormal cellular environment triggers malignant
cell growth, initiating cancers [1]. The approval of imatinib in 2001,
a first generation tyrosine kinase inhibitor (TKI), significantly
improved cancer patient prognosis compared to the standard
interferon alpha and cytarabine combination, highlighting the
importance of targeting kinases in cancer treatment [2]. At the cel-
lular level, imatinib competes with ATP to bind to, and conse-
quently inhibit ABL1 kinase [3–5]. However, with increased
clinical use over time, the therapeutic relevance of imatinib
decreased due to the accumulation of missense mutations within
its target, ABL1 kinase, especially those residues participating in
drug recognition and binding. To overcome imatinib resistance,
efforts were directed towards the development of second- and
third-generation TKIs, such as dasatinib, nilotinib, bosutinib, pona-
tinib, and axitinib.

While several resistance mutation hotspots in ABL1 kinase (at
gatekeeper, P-loop, aC-helix, and A-loop regions) modulating the
binding affinity of different drugs have been well characterised
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[6], the increased mutation rate in cancers leads to the introduc-
tion of variants whose effects on therapeutic efficacy have not been
previously studied. Pre-emptively identifying kinase mutations
leading to potential therapeutic failure for specific drugs could lead
to better and more personalised patient treatment and
management.

One challenge for tackling ABL1 drug resistance is that muta-
tions at the same position may modulate the drug affinity to a dif-
ferent extent, depending not only on the type of mutant amino
acids but also on the drugs being used. Although most approved
kinase inhibitors are ATP-competitive, they can be sensitive to dif-
ferent changes of the residue environment brought by different
mutations, as each of them can have distinctive interactions with
the kinase based on their favourable binding poses: (1) type I inhi-
bitors bind to the active kinase (DFG-in), mainly occupying the
hinge region where the adenine ring of the ATP binds; (2) type II
inhibitors bind to the inactive kinase (DFG-out), extending to a
hydrophobic back pocket while maintaining interactions with the
ATP binding site. Apart from altering the drug affinity directly
through the local atomic changes, mutations can also impact pro-
tein stability as well as dynamics, which may trigger conforma-
tional changes and impact drug recognition and interactions [7].
Moreover, these unknown structural changes may even cause
favorable interactions with the endogenous ATP rather than the
drugs, which could lead to the loss of drug competency and off-
target effects. The broad repertoire of mutation effects and binding
modes makes the characterization of molecular mechanisms of the
resistance profiles a challenging task.

Experimental methods studying the effect of mutations on ther-
apeutic efficacy, such as cell-based mutagenesis screening and
yeast-based flow-cytometry [8], are labour intensive. Computa-
tional methods, on the other hand, have been proven useful and
cost-effective for characterising the consequence of mutations.
Although several predictive models have been developed to iden-
tify potential ABL drug resistance mutations [9–11], their perfor-
mances were not sufficient to aid clinical decision support nor
are they freely available for use or evaluation. Furthermore, limited
insights into the molecular mechanism of drug resistance have
been inferred from current models. Thus, there is a demand to
develop computational tools capable of accurately predicting and
understanding kinase drug resistance mutations.

We have previously shown that a suite of structural- and
sequence-based computational tools which characterise the
molecular consequence of mutations on protein dynamics, flexibil-
ity, stability, as well as ligand binding affinity, can successfully pre-
dict anti-tuberculosis drug resistance [12–16]. Additionally, we
have also shown that the concept of graph-based signatures could
be used to model both protein and small molecule structures, cap-
turing both physicochemical and geometric properties [17–19].
Incorporating these two approaches, here we developed a novel,
web-based diagnostic tool, SUSPECT-ABL (StrUctural Susceptibility
PrEdiCTion for ABeLson 1 kinase), to pre-emptively predict the
binding free-energy changes (DDG) and resistance profiles of all
possible ABL mutations against eight FDA-approved drugs. The
newly identified resistance mutations via in silico saturation muta-
genesis offer opportunities for prioritization of in vivo experimen-
tal validation.
2. Results and discussion

The methodology of this project is summarised in Fig. 1 by the
following four steps: (1) data and structural curation, which
involved molecular docking of inhibitors in the absence of experi-
mental co-crystallized structures; (2) feature engineering, which
involved the generation and evaluation of a set of features captur-
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ing the structural, geometric and physicochemical properties of the
protein and ligands; (3) machine learning, where structural
insights obtained were used to train and test supervised machine
learning algorithms to accurately predict single-point mutations
in ABL leading to resistance against eight inhibitors and the corre-
sponding changes in Gibbs free energy of binding (DDG); (4) web
server development, where computational saturation mutagenesis
results for eight FDA-approved drugs and the 3-dimensional visu-
alization of ABL-ligand interactions were made freely available
through a web server.

2.1. Structural information on ABL-ligand complexes

We curated 144 binding affinity effects (given as DDG values)
for 31 ABL mutations against eight FDA-approved drugs [9]. The
corresponding ABL-ligand co-crystallized structures were curated
from the RCSB Protein Data Bank [20] as available or generated
by virtual docking [21–22] (Table S1). The 31 mutations are located
throughout the kinase domain, with some present at the ATP bind-
ing site, and multiple mutations clustering at the same position
(Fig. 2A). Among them, six mutations were observed to cause resis-
tance (as denoted by an experimental DDG � 1.36 Kcal/mol, lead-
ing to more than 10-fold affinity loss) to at least one drug.
Although these mutations were all located within the ATP binding
pocket, we found the mutated residues are not essential for the
binding of ATP, as shown by a lack of disruption to ATP-kinase
interactions [23]. This may suggest that to cause drug resistance,
the mutations should not impair the binding ability of ATP
drastically.

Overall, the Abl-ligand complexes employed in this study are
structurally diverse. This enables thorough analysis and predic-
tions of resistance mutations throughout the kinase domain
against different ligands with respective binding modes. The eight
drugs include both type I (Axitinib, Bosutinib, Dasatinib, Erlotinib,
and Gefitinib) and type II (Imatinib, Nilotinib, and Ponatinib) inhi-
bitors. Superimposing the structures, we confirmed that the major
conformational difference between the two binding modes is at the
activation loop (Fig. 2B).

In the absence of Erlotinib- and Gefitinib-bound crystal struc-
tures, we docked these two inhibitors in the Bosutinib-bound
structure (PDB ID: 3UE4) due to the shared type I binding mode
and structural similarity among the three ligands. Similar to the
quinoline group of Bosutinib, the recurring quinazoline group of
Erlotinib and Gefitinib was thought to be the main determinant
for binding, as it mimics the adenine ring of ATP. To confirm that
the obtained poses of Erlotinib and Gefitinib were favourable, we
calculated the intermolecular interactions using Arpeggio [23].
We found the quinazoline groups form hydrogen bonds with the
hinge residue Met318, and Carbon-p interactions with Ala269
and Leu370, which is a shared characteristic with Bosutinib
(Fig. S1). Moreover, the benzene rings connected to the quinazoli-
nes form Carbon-p interactions with the ABL1, which coincides
with their interactions with epidermal growth factor receptor
(EGFR) – the protein for which the Erlotinib and Gefitinib were
originally developed as type I inhibitors.

2.2. Structural, biophysical, and evolutionary consequences of ABL
mutations against different inhibitors

Although all resistance mutations in the dataset are located
near the ATP site, the same mutation can modulate the binding
affinity of type I and II inhibitors to a different extent due to their
distinctive binding modes. We found some significant differences
between resistant (DDG � 1.36 Kcal/mol, n = 19) and susceptible
(DDG <1.36 Kcal/mol, n = 125) mutations specific to each type of
inhibitor.



Fig. 1. Methodology workflow. There were four steps involved in the methodology. Firstly, we curated the changes in binding free-energy upon mutation from Hauser et al.
[9] and collected complex structures from RCSB PDB. After that, we generated a set of features capturing both physicochemical properties and graph-based patterns. These
features were input into different machine learning algorithms, trained using cross-validation and tested on non-redundant blind test sets. Finally, a freely available web
server, SUSPECT-ABL, was developed.
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To better capture the cellular environments, we calculated the
effects of mutations on both inhibitors and the endogenous ligand
(ATP). Interestingly, resistance mutations against type I inhibitors
were specifically found to be more associated with ATP modulation
due to similar binding sites, even though the mutated residues do
not directly interact with ATP. These mutations are more likely to
impair an Amide-Ring interaction between residues, but fewer
Carbon-p interactions were observed between the wild-type resi-
dues and ATP. Moreover, they have lower SIFT scores [24], which
means the amino acid substitutions are more intolerant to the
accumulation of mutations, resulting in detrimental effects on pro-
tein function (Fig. 3A, ‘Mann-Whitney’ test p-values <0.005). These
findings suggest that resistance mutations against type I inhibitors
may occur within the hinge region where the sequence is evolu-
tionary conserved, but they may reduce the affinity of drugs more
than the ATP. On the other hand, the affinity of type II inhibitors
has been observed to be less sensitive to these mutations, as they
extend to the extra pockets and reduce contacts with the hinge
region (Fig. S2).

Resistance mutations against type II inhibitors, on the other
hand, occur frequently in the phosphate-binding loop (P-loop).
They usually involve more van der Waals clashes in the wild-
type environment, destabilize the kinase to a lower extent, and
have lower residual solvent accessibility (Fig. 3B, ‘Mann-Whitney’
5383
test p-values <0.05). This can be caused by impairing the distinc-
tive ‘‘kinked” conformation of the P-loop in the inactive ABL
(Fig. S2), which is maintained by van der Waals clashes between
several essential residues, and therefore decreasing the surface
complementarity with type II inhibitors, favoring the ATP binding
[25].

While drug binding affinity can be modulated by different
structural, biophysical and evolutionary changes depending on
the binding modes, we found that the gatekeeper mutation T315I
can cause resistance to both types I and II inhibitors, with the
exception of Axitinib (type I) and Ponatinib (type II). It has been
shown that T315I causes resistance subject to a steric hindrance
by a substantial conformational change from the inactive ABL
(DFG-out) to the active form (DFG-in) [26–27]. However, axitinib
can still inhibit the T315I DFG-in mutant structure potently due
to its distinct binding pattern – without close contacts with the
activation loop [28]; and Ponatinib can effectively inhibit the con-
formational change of the activation loop, locking the T315I
mutant complex at the DFG-out status without affecting ligand
interactions [29–30]. The overall higher efficacy of these two inhi-
bitors across all the mutations can be associated with a common
characteristic – having the lowest topological polar surface area
(TPSA) within the respective binding modes, which makes them
less sensitive to polarity change brought by mutations. Therefore,



Fig. 2. Locations of mutations, inhibitors and the activation loop in ABL kinase. A) Spatial distribution of mutations in eight ABL-drug complexes. The shown structure is
ABL kinase complexed with ATP (PDB ID: 2G1T). Mutations causing resistance (DDG � 1.36 Kcal/mol) to at least one drug are colored in red, other mutations (DDG <1.36
Kcal/mol) are colored in blue, and ATP interacting residues are shown in the bottom right box. B) The conformations of type I and type II binding modes. Type I inhibitors (e.g.,
axitinib, in blue) bind to the active kinase, where the activation loop (A-Loop) adopts the DFG-in conformation (PDB ID: 4WA9). They occupy only the hinge region. Type II
inhibitors (e.g., imatinib, in orange) bind to the inactive kinase, where the A-Loop adopts the DFG-out conformation (PDB ID: 1OPJ). They have extra access to the gatekeeper
and back pocket. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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to better capture the impact of mutations on drug binding affinity,
it is important to describe the residue environment using both
structural and ligand information.

2.3. Quantifying the changes in binding affinity upon single point ABL
mutations

Based on the patterns observed through structural analysis of
the ABL-ligand complexes and the molecular properties of ligands,
we next sought to quantitatively predict the changes in DDG upon
missense mutation in response to each of the drugs using super-
vised machine learning. Different machine learning algorithms
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from python sklearn library [31] were used to train and optimize
regression models through bottom-up greedy feature selection
on 204 DDG values, which included 102 DDGs obtained from
hypothetical reverse mutations, generated to better balance the
distribution of values, which are naturally biased towards muta-
tions decreasing binding affinity. Of these, the Extra Tree regressor
was chosen based on better and consistent performance between
cross-validation and external blind test set, measured through
Pearson’s correlation. The final model, SUSPECT-ABL was made
up of 10 features, which broadly describe the protein local environ-
mental changes upon mutation, ligand properties and sequence-
derived evolutionary properties (Table S3).



Fig. 3. Key features distinguishing resistant and susceptible mutations against type I (panel A) and II (panel B) inhibitors. The structural, biophysical, and evolutionary
consequences of resistance mutations are specific for each of the binding modes (* p-value < 0.05, ** p-value < 0.01, ‘Mann-Whitney’ test).
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On a low-redundancy validation scheme, SUSPECT-ABL was
able to achieve Pearson’s, Spearman’s and Kendall’s correlations
of 0.77, 0.77 and 0.59 respectively (RMSE = 0.68 Kcal/mol) on the
training set, under leave-one-position-out cross-validation; and
0.74, 0.57 and 0.42 (RMSE = 0.42 Kcal/mol) on the blind test
(Fig. 4), significantly outperforming other models which use
data-driven or physics-based computational approaches (Table 1).
After removing the 10% outliers, Pearson’s correlations increased to
0.84 on cross-validation and 0.83 on the blind test. These outlier
mutations were all located in beta strands. Among them, the hypo-
thetical reverse mutations lay mostly below the best-fit line (un-
derestimated), whereas the predictions for their respective
original forward mutations lay above (overestimated). This can
be caused by compromising several strong resistance mutations
in beta strands. Unlikely, the 10% outliers in the blind test set are
Fig. 4. Regression plot between actual and predicted DDG on low-redundancy cross
mutations, left panel) and on the independent blind test set (42 forward mutations
improved. (For interpretation of the references to colour in this figure legend, the reade
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all located at position 317 in a loop, which is thought to be a result
of its overrepresentation (64%) in the blind test set. The perfor-
mance when including only the forward mutations, and using
10-fold cross-validation are shown in Table S2 for comparison
purposes.

Among the 10 selected features (Table S3), 7 are graph-based
signatures that capture the geometric properties of atoms within
the wild-type local residue environment, describing the 3-
dimensional inter- and intra-atomic arrangements in both ABL-
drug complexes and the ABL-ATP complex. Additionally, there
are two ligand features, positively ionizable atom counts and the
number of rotatable bonds, which potentially distinguish type I
and II inhibitors as well as the higher effectiveness of axitinib
and ponatinib in general. Lastly, a sequence-based feature that
relies on the optimal substitution matrix, incorporating both
-validation (leave-one-position out) (102 forward and 102 hypothetical reverse
, right panel). By removing the 10% outliers (highlighted in red), the performances
r is referred to the web version of this article.)



Table 1
Performance of the final regressor on a non-redundant blind test set. The model was trained including both forward and hypothetical reverse mutations, and tested on a non-
redundant blind test set. The performances of other methods are also shown for comparison purposes.

Name Method Pearson Spearman Kendall RMSE (Kcal/mol)

SUSPECT-ABL Machine Learning 0.74 0.57 0.42 0.40
mCSM-lig [49] Machine Learning 0.43 0.33 0.24 0.75
Aldeghi et al. [11] Machine Learning 0.06 0.21 0.15 0.64
Hauser et al. [9] Molecular Dynamics 0.65 0.38 0.30 0.69
A99 [11] Molecular Dynamics 0.40 0.26 0.17 0.68
A99L Molecular Dynamics 0.60 0.37 0.26 0.55
A99DC Molecular Dynamics 0.58 0.45 0.31 0.55
A14 Molecular Dynamics 0.37 0.37 0.26 0.70
R15 [11] Rosetta 0.72 0.50 0.38 0.49
R16 Rosetta 0.47 0.29 0.20 0.70
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multiple sequence alignment and the evolutionary information in
the context of secondary structure, KOSJ950100_SST (aain-
dex32,33), could potentially capture the impact of mutations on
protein structure.

Based on such diverse features ranging from the geometric
properties of ABL-ligand structures, ligand properties, and the
structural impact of mutations, we further investigated whether
SUSPECT-ABL shows similar performance on each of the binding
modes. By expanding the prediction results, we found that
although the Pearson’s correlations are inconsistent across the
two binding modes on training and blind test sets, this could be
caused by limited sample size and high similarity between samples
in the blind test set (Fig. S3). On the other hand, the model
achieved reasonable RMSE for both types I (0.74 Kcal/mol on
cross-validation, 0.46 Kcal/mol on blind test) and II (0.61 Kcal/mol
on cross-validation, 0.34 Kcal/mol on blind test) inhibitors. There-
fore, we still expect that SUSPECT-ABL could generalize well on
novel data for both binding modes.

2.4. Classifying resistant and susceptible ABL mutations

While the binding free-energy changes can give us insights into
how strongly the mutations affect drug affinity, for clinical applica-
tions, it can also be valuable to directly predict whether a given
mutation could lead to drug resistance. Rather than transforming
the predictions from our regressor to resistant (DDG � 1.36 Kcal/-
mol) and susceptible (DDG <1.36 Kcal/mol) mutations using the
defined 10-fold affinity loss threshold, we decided to train a sepa-
rate classifier to improve the model robustness. To keep consis-
tency, the dataset was split into training and blind test in the
same way. Since only a few mutations increase the drug binding
affinity (DDG <0), the inclusion of hypothetical reverse mutations
does not mitigate the data imbalance (19 resistant and 125 suscep-
tible mutations). With such limited samples of resistance muta-
tions, however, SUSPECT-ABL still achieved Matthew’s correlation
coefficient (MCC) of 0.73 (AUC = 0.84, Fig. 5) on the training set
under stratified leave-one-position-out cross-validation, and 0.63
(AUC = 0.89) on the blind test, using the Random Forest classifica-
tion algorithm. The performance when including the hypothetical
reverse mutations, and using 10-fold cross-validation are shown
in Table S4 for comparison. Notably, the nine selected features in
the classifier overlap significantly with the key features distin-
guishing resistant and susceptible mutations detected previously
in Fig. 3 (TPSA, D Amide-Ring interaction, and DynaMut2[34,35]),
which further highlights their importance (Table S5).

Compared to several other models, the state-of-the-art molecu-
lar dynamics method by Hauser et al. [9] and the Rosetta method
R15 achieved higher MCCs on the blind test set (0.77 and 0.76,
respectively), but their significantly lower MCCs on our training
set (0.30 and 0.43, respectively) indicates that these two methods
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can be highly sensitive to different mutations (Table 2). By analys-
ing the false negatives (resistance mutations which are predicted
as susceptible), we found SUSPECT-ABL, Hauser et al. [9] and R15
were not able to identify the mutation E255V, which is resistant
to imatinib and nilotinib, as well as the mutation E255K being
resistant to only imatinib.

The molecular interactions calculated by Arpeggio [23] revealed
that E255 has no direct contact with the ligands, instead, its car-
boxylate group in the side chain forms an electrostatic triad with
K247 and Y257, stabilizing the P-loop, which was proven to be
required for binding of Type II inhibitors [25] (Fig. S4). Disruption
of the triad interactions, however, can reduce the surface comple-
mentarity with drugs, and cause distributed allosteric effects
which destabilize the activation loop. This rare and indirect contri-
bution to drug resistance increases the challenge for detection.
Interestingly, after we changed the resistance threshold from 10-
fold affinity loss to 5-fold (DDG = 0.95 Kcal/mol), the model was
able to detect five out of six resistance cases of E255 mutations,
while still predicting the susceptible cases correctly. Moreover,
the overall performance of the 5-fold affinity loss classifier (MCCs
of 0.75 on training, 0.67 on blind test) improved compared to the
10-fold (Table S6), which can be caused by the increased sample
size of resistance cases (from 19 to 27). Therefore, the indirect con-
tributions of resistance can still be detected while relaxing the
classification threshold.

2.5. Deploying the model for saturation mutagenesis

We performed in silico saturation mutagenesis within the
kinase domain to pre-emptively identify ABL mutations leading
to therapeutic failures. Although the resistance mutations (more
than 10-fold affinity loss) in the dataset were clustered within
the ATP binding pocket, several studies [25,36] have shown that
distant mutations may also impair drug binding, despite many of
them occurring less frequently. To test whether our classification
model could generalise to those unseen mutations, we thoroughly
analysed the newly identified resistance mutations that occur at
different positions with those in the dataset created by Hauser
et al. [9], and found that many of them coincide with clinically
observed or in vitro screened resistance mutations from various
sources [25,36]. These include mutations at residues close to the
ATP site, which have no direct contact with ATP but shields the cor-
responding drugs from solvent (V268, A269, V270, and G321); as
well as mutations at allosteric sites to ATP, which destabilize the
ABL-drug complex by disrupting the gatekeeper residue or the acti-
vation loop (F283, M290, and F382). Thus the resistance mutations
predicted by SUSPECT-ABL through saturation mutagenesis are not
restricted to the residues within the ATP pocket which directly
interact with the drugs, but extend to more complicated resistance
mechanisms by including biophysical features in the model.



Fig. 5. ROC curves comparing the classification model performance on the cross-validation and the blind test set. Our model was able to correctly identify resistance
mutations with AUC >0.8 for both training and blind test sets.

Table 2
Performance of the final classifier on a non-redundant blind test set. The model was trained using leave-one-position out cross-validation methods including only the forward
mutations, and tested on a non-redundant blind test set. For the purpose of this classification, resistance mutations were those having a binding affinity higher than 1.36 kcal/mol.
The performances of other methods are also shown for comparison purposes. Namely, methods adopted by Hauser et al. and Rosetta outperformed SUSPECT-ABL, despite poor
performance on our training set. The F1 score was calculated when the resistant class is the positive, and the susceptible class is the negative.

Name Method MCC F1 BACC

SUSPECT-ABL Machine Learning 0.63 0.67 0.79
Hauser et al. [9] Molecular Dynamics 0.77 (0.30 on our training set) 0.80 0.89
A99/A99L/A99DC [11] Molecular Dynamics 0.42 0.33 0.6
A14 Molecular Dynamics �0.06 NaN 0.49
R15 Rosetta 0.76 (0.43 on our training set) 0.77 0.96
R16 Rosetta 0.55 0.60 0.77
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2.6. SUSPECT-ABL web server

We have implemented SUSPECT-ABL as a user-friendly and

freely available web server at http://biosig.unimelb.edu.au/sus-

pect_abl/, which is a database for all possible ABL variants within
the kinase domain (from residue number 242 to 493). The web ser-
ver allows the predictions of phenotypes (resistant or susceptible)
and the changes in DDG upon missense mutation, as well as the
visualization of molecular interactions within the wild-type and
mutant residue environment. Users can select one or more FDA-
approved tyrosine kinase inhibitors, specify a single missense
mutation in the format T315I (where threonine is the wild-type
5387
residue, 315 is the residue position, isoleucine is the mutant resi-
due), or upload a list of missense mutations in the same format.
A step-by-step help page with illustrative figures can be found at

http://biosig.unimelb.edu.au/suspect_abl/help.
Fig. 6 shows a snapshot of the output page for the single muta-

tion T315I while selecting axitinib and imatinib. The web server
displays the results in a table, where rows are inhibitors, columns
include the predictions of phenotypes, DDGs, information about
the wild-type environment (residual solvent accessibility, sec-
ondary structure, dihedral angles, residual depth [37], and distance
to ligand) and several other predicted parameters (DynaMut2 [34–
35], mCSM [17], MTR3D [38], MTRv2 [39–40], and MTRX scores).

http://biosig.unimelb.edu.au/suspect_abl/
http://biosig.unimelb.edu.au/suspect_abl/
http://biosig.unimelb.edu.au/suspect_abl/help


Fig. 6. SUSPECT-ABL web server interface for single point mutation input. The predictions for the regressor and the classifier are displayed in a table, along with the
information about the wild-type environment and several other predicted parameters. Mutation details, conservation score and pharmacophore changes are also shown
below the table. In the interaction viewer box, users can visualise the non-covalent interactions around the mutation site, and are allowed to select different inhibitors,
compare the wild-type and mutant, as well as customize the representation.
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Below the table, there is information about the mutation, its con-
servation scores predicted by PROVEAN [41] and SNAP2 [42], as
well as the resulting pharmacophore changes. Additionally, there
is a downloadable 3D interactive viewer built using NGL [43],
which allows users to analyse the non-covalent intermolecular
interactions for the residue specified in the input calculated using
Arpeggio [23], for both wild-type and mutant structures across dif-
ferent ABL-inhibitor complexes. The results for the mutation list
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input are summarized in a downloadable table, where rows are
drugs and columns are mutations, which allows users to compare
the predicted phenotypes and DDGs for different drugs across
input mutations, and access the corresponding result pages for sin-
gle mutations through links. There is also a 3D viewer at the bot-
tom of the page in which the residues in the input mutation list
are mapped to the ABL-ligand complexes, and colored according
to the predicted phenotype (Fig. S5).
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3. Conclusions

Here we present SUSPECT-ABL, a web server that integrates our
well-established graph-based signatures concept with dynamics
properties, conservation scores and small-molecule properties to
accurately predict how missense mutations in ABL1 kinase modu-
late the binding affinity of eight FDA-approved drugs and thereby
lead to resistance. Our method has shown to be robust when eval-
uated using different cross-validation methods, and outperformed
the existing tools on a non-redundant blind test set. Since the ATP
sites are highly conserved across different kinases, this approach
can also be potentially applied to identify resistance mutations in
other kinases against any given ATP-competitive kinase inhibitor,
using either the experimental kinase-ligand structures or docked
structures. We anticipate expanding this tool to predict the impact
of kinome-wide missense mutations on modulating the inhibition
ability of a large library of small molecule kinase inhibitors. Finally,
due to its consideration of ABL1-inhibiting drugs with different
clinical indications, our tool, SUSPECT-ABL offers opportunities to
both clinical and research fields. This is particularly due to its
applicability in drug repurposing, and hit prioritization according
to resistance potential detectable through large-scale comparisons
across mutations followed by in vivo experimental validation. In
this way, our tool could reduce cost and time commitment in the
pipeline of improving precision medicine, and eventually providing
patients with tailored chemotherapies.
4. Methods

4.1. Dataset

The binding affinity effects of 144 mutations (DDG, given in
Kcal/mol) were obtained from Hauser et al. [9], including 19 resis-
tant (DDG � 1.36 Kcal/mol) and 125 susceptible (DDG <1.36 Kcal/-
mol) mutations defined by the 10-fold affinity loss cut-off. Within
this dataset, mutations were phenotyped according to their
response to eight different TKIs: imatinib, dasatinib, nilotinib,
bosutinib, ponatinib, erlotinib, gefitinib and axitinib. Of these, all
drugs have shown strong inhibition to ABL1 kinase in vitro
[28,44], while imatinib, dasatinib, nilotinib, bosutinib and pona-
tinib are indicated clinically for use in CML. Further to that, given
the limited sample size of the original dataset, we introduced
hypothetical reverse mutations in the training set as an over-
sampling strategy to better balance the range of mutation effects
and increase model robustness for the regression task. These
reverse mutations were computed based on the premise that the
binding free energy change of a mutation from the wild-type ABL
to its mutant (DDGWT?MT) is equivalent to the opposite change
in binding free energy of the hypothetical reverse mutation (-
DDGMT?WT) [35,45].
4.2. ABL-ligand structures

The six available ABL-ligand co-crystallized structures were
curated from the RCSB PDB [20] (Table S1), and preprocessed in
Maestro to fill in missing residues and atoms. Of these, the
imatinib-bound crystallized structure (PDB: 1OPJ), represented
the mouse homolog, and was used as a template for homology
modelling of the human ABL1 kinase. Additionally, when process-
ing the ATP-bound structure (PDB: 2G1T), we removed the peptide
conjugate present with ATP, as this was required for crystallization,
but not for ATP binding. Finally, as the crystallographic structures
of ABL1 kinase bound to erlotinib and gefitinib were not available,
these drugs were docked based on the bound coordinates of co-
crystallized Bosutinib (PDB: 3UE4), due to similarities in chemical
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moieties as calculated using ChemMine Tools, and binding modal-
ities (type I inhibitors). During docking, the methods EasyVS [22]
and Glide from the Maestro package [21] were used for comparison
purposes. An initial redocking of Bosutinib within its crystal struc-
ture was used as a control to assess the potential utility of each tool
within the target ABL1 kinase, and yielded comparable poses to the
co-crystallized ligand. Comparisons between all binding poses
were carried out using Pymol, where the final chosen poses were
generated using Maestro, and retained comparable contacts
between the drug and receptor, calculated using Arpeggio.

4.3. Feature generation

The structural consequences of all ABL mutations were captured
by considering a total of 1,013 features, which were broadly
divided into descriptors of (1) the molecular properties and phar-
macophore modelling of different drugs; (2) the physicochemical
properties and local flexibility of ABL around the mutation sites;
(3) the interatomic interactions between ligands and the kinase;
and (4) the distance patterns between pharmacophore pairs within
the local residue environment using the concept of graph-based
signatures (Fig. 1B).

The first feature subset described the different ligands bound to
ABL1. It includes molecular properties (logP, number of rings,
rotatable bonds, surface area and others) calculated by the Python
RDKit toolkit based on SMILES, and the atomic pharmacophore fre-
quency counts [18–19,46–48]. The distances from ligands to the
mutation sites in Angstrom (Å) and DDG predicted by mCSM-lig
[49] were also included.

The second feature subset considered the unbound ABL kinase,
capturing the impacts of mutations on physicochemical properties
at the binding site (aaindex [32] and changes in pharmacophore
count[17]), protein stability changes to account for the local con-
formational and flexibility changes (predicted by Dynamut [34],
Dynamut2 [35], mCSM [17], DUET [50], and SDM[45]), and func-
tional changes predicted by SIFT [24]. Furthermore, other features
considering the local residue environment in wild-type structures
included residue depth [37], residue solvent accessibility, deforma-
tion and fluctuation energies [51].

The third feature subset included the local interatomic contacts
of ligand-kinase complexes calculated by Arpeggio, both in the
wild-type and the differences between the wild-type and the
mutant. These features were calculated for each bound ligand,
and compared to endogenous ligand ATP.

The final subset is the graph-based signatures [17], which cap-
ture the geometric properties within the local residue environment
under different distance thresholds. The atoms with pharma-
cophore labels (Hydrophobic, Positively charged, Negatively
charged, Hydrogen Acceptor, Hydrogen Donor, Aromatic and Neu-
tral) are modelled as nodes, and atomic interactions are modelled
as edges. From this graph representation, distance patterns
between pharmacophore pairs around the mutation site are cap-
tured as a cumulative distribution.

4.4. Machine learning and performance evaluation

To ensure low-redundancy, the dataset was split in a way that
mutations at the same site occur exclusively in the training (102
DDG values for 19 mutations across 13 sites) or in a non-
redundant blind test set (42 DDG values for 12 mutations across
6 sites). We trained and evaluated the models using different con-
trols and comparisons for both the regressor and the classifier:
with and without reverse mutations; 10-fold versus leave-one-
position-out cross-validations within the training set; as well as
different machine learning algorithms from the python sklearn
library [31] (random forest, extra trees, multilayer perceptrons,



Y. Zhou, S. Portelli, M. Pat et al. Computational and Structural Biotechnology Journal 19 (2021) 5381–5391
and support vector machines). The ones with the best performance
were selected as our final models.

Moreover, a bottom-up greedy feature selection method was
used to reduce the noise, according to Pearson’s correlation (r)
for the regressor, and Matthew’s correlation coefficient (MCC) for
the classifiers. The final models were chosen based on consistent
performance between train and test. The model performances
were further evaluated by different metrics: Kendall’s and Spear-
man’s correlation coefficients, and root mean squared error (RMSE)
for regression; F1 score, balanced accuracy (BACC) and Area Under
receiver operating characteristic Curve (AUC) for classification.

4.5. Web server development

The SUSPECT-ABL server front-end was built using materialize
CSS framework version 1.0.0, while the backend was built in
Python via the Flask framework (version 0.12.2). It is hosted on a
Linux server running Apache.
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