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a b s t r a c t

Antimicrobials against bacterial, viral and parasitic pathogens have transformed human and animal
health. Nevertheless, their widespread use (and misuse) has led to the emergence of antimicrobial resis-
tance (AMR) which poses a potentially catastrophic threat to public health and animal husbandry. There
are several routes, both intrinsic and acquired, by which AMR can develop. One major route is through
non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions. Large scale genomic stud-
ies using high-throughput sequencing data have provided powerful new ways to rapidly detect and
respond to such genetic mutations linked to AMR. However, these studies are limited in their mechanistic
insight. Computational tools can rapidly and inexpensively evaluate the effect of mutations on protein
function and evolution. Subsequent insights can then inform experimental studies, and direct existing
or new computational methods. Here we review a range of sequence and structure-based computational
tools, focussing on tools successfully used to investigate mutational effect on drug targets in clinically
important pathogens, particularly Mycobacterium tuberculosis. Combining genomic results with the bio-
physical effects of mutations can help reveal the molecular basis and consequences of resistance devel-
opment. Furthermore, we summarise how the application of such a mechanistic understanding of drug
resistance can be applied to limit the impact of AMR.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

1.1. Antimicrobial resistance (AMR)

Drugs against bacterial, viral and parasitic pathogens have truly
revolutionised modern medicine, transforming human health and
saving millions of lives. This transformation, however, is under
threat due to emerging and widespread resistance to these drugs
[1]. This threat is termed antimicrobial resistance (AMR), and is a
natural and expected consequence of the Darwinian principle of
‘‘survival of the fittest”. Almost all antimicrobial drugs have seen
resistance arise within 5–10 years of their introduction [2]. The
consequences of AMR pose a catastrophic public health threat,
responsible for over 700,000 annual deaths [3], prolonged hospital
stays, poor disease outcome, less effective treatments, and poten-
tially untreatable diseases. Considering antibiotic resistance alone,
the toll is predicted to rise above 10 million deaths per year by
2050 if left unchecked. The associated global economic burden is
estimated at 100 trillion USD [3].

The disease burden of AMR has been accelerated by the overuse
and misuse of antimicrobials in health, animal and agricultural
industries. This burden is further compounded by a lack of market
incentives for antimicrobial drug development [3]. Nearly all major
infectious diseases are affected by either prevailing or emerging
resistance. For example, it is estimated that people with MRSA
(Methicillin-Resistant Staphylococcus aureus) are 64% more likely
to die than people with a non-resistant form of the infection [1].
Similarly, resistance to artemisinin-based combination therapy,
the first-line treatment for malaria caused by Plasmodium falci-
parum (P. falciparum), has been confirmed in 5 countries in the
Greater Mekong Region in 2016 [1]. Likewise, in 2010, an esti-
mated 7–15% patients starting antiretroviral therapy (ART) in
developing countries had drug-resistant HIV, with up to 40% resis-
tance observed in patients re-starting treatment [1].

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb),
is a major global health problem, with increasing drug resistance
making disease control difficult [4]. In 2017, 558,000 cases of
rifampicin resistant TB were reported, among which 82% had addi-
tional resistance to isoniazid, leading to multidrug-resistant TB
(MDR-TB). Among these MDR cases, ~9% cases were further resis-
tant to one fluoroquinolone and one injectable 2nd line drug, lead-
ing to extensively drug resistant TB (XDR-TB) [5,6].

Resistance is attributed to multiple factors including selective
pressure on Mtb from repeated exposure to the same antibiotic, a
lack of access to new therapies, and patient non-compliance due
to long treatment regimens and drug toxicity effects [7,8]. Both
phenotypic and genotypic routes are involved in the development
of Mtb resistance. While epigenetic changes and post transcrip-
tional modifications drive the phenotypic route to resistance
[9,10], the genetic route is chiefly acquired via accumulation of
mutations in the absence of horizontal gene transfer. Resistance-
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associated point mutations have been described across all anti-
TB drugs, including newer ones (fluoroquinolones, bedaquiline)
[11,12].

1.2. Drivers of AMR

The drivers of AMR can be both intrinsic or acquired. Intrinsic
resistance refers to the innate mechanisms present within
microbes to combat the action of drugs, and is considered to be
independent of previous drug exposure. Intrinsic mechanisms
include:

(i) the presence of an additional impermeable outer membrane
in Gram negative bacteria making them naturally resistant
to antibiotics that target cell wall synthesis such as van-
comycin [13].

(ii) the presence of enzymes that either prevent drug binding
within an organism, or destroy the drug. An example of
the former is the low affinity binding by Gram positive bac-
teria of penicillin-binding proteins (PBPs) required for the
synthesis of peptidoglycan in the cell wall, thus making
them naturally resistant to the b-lactam antibiotic aztre-
onam. An example of the latter is the production of b-
lactamase by Gram negative bacteria which destroy b-
lactam antibiotics before they can reach their PBP targets
[14].

(iii) the presence of multi-drug efflux pumps, which are complex
bacterial molecular machines capable of removing drugs and
toxic compounds out of the cell. For example, efflux medi-
ated drug resistance in tetracycline is mediated by the Tet
efflux pumps which use proton exchange as its energy
source to expel the antibiotic [15].

(iv) the lack of enzymes or metabolic pathways in aerobic bacte-
ria to chemically reduce the drug metronidazole to its active
form [13].

(v) the co-evolution of microbes with their surroundings con-
taining a variety of toxic and benign molecules and com-
pounds, which is commonly observed in environmental
microbes. For example, the soil bacteria actinomycetes har-
bours an intrinsic ‘resistome’ to the many antibiotics it pro-
duces [16,17].

(vi) the phenomenon of bacterial persistence, notably observed
in asymptomatic and chronic infections such as typhoid
and TB. Persisters are a sub population of antibiotic tolerant
cells that exhibit lowmetabolic activity and arrested growth,
contributing to increased drug tolerance and resistance [18].

Acquired drug resistance is typically driven by genetic variation
including point mutations (missense mutations or non-
synonymous single nucleotide polymorphisms; nsSNPs) and inser-
tions/deletions (INDELs) such as frameshift mutations. Such muta-
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tions can alter drug activation, binding affinity and permeability,
efflux pump activity, and biofilm formation [19]. Furthermore, a
common and prominent mechanism called horizontal gene trans-
fer (HGT) or lateral gene transfer (LGT) has been a significant cause
of widespread drug resistance. HGT/LGT is found almost exclu-
sively in bacteria where resistance conferring genes are transferred
between bacterial species [20,21].

Despite the two distinct routes of resistance, intrinsic mecha-
nisms may be driven by adaptive/acquired routes. For example
the efficacy of drug efflux pumps in Mtb are modulated by SNP
mutations [22,23]. The drivers of AMR and the various mechanisms
beyond point mutations (which forms the focus of this review)
have been extensively reviewed elsewhere: antibiotic resistance
[13,14], antifungal resistance [24–26], antiviral resistance [27,28]
and antiparasitic drug resistance [29–31].

1.3. Point mutations linked to AMR

A major route to AMR is driven by point mutations. For exam-
ple, in Mtb, mutations in several genes have been associated with
resistance to rifampicin (rpoB), isoniazid (katG, inhA and ahpC),
streptomycin (gidB, rrs and rpsL), pyrazinamide (pncA), ethambutol
(embB) and fluroquinolone (gyrA and gyrB). More generally, muta-
tions within gyrA confer low level fluroquinolone resistance in
Gram negative bacteria, while additional mutations in parC and
gyrB are responsible for high level resistance [32]. Ribosomal
mutations affecting ribosome assembly are particularly problem-
atic since these lead to large scale transcriptomic and proteomic
changes. In Mycobacterium smegmatis, such mutations have led to
downregulation of KatG catalase (activating enzyme for the drug
isoniazid) and upregulation of the transcription factor WhiB7
involved in innate antibiotic resistance. Further, the fitness cost
of these mutations is alleviated in a multi-drug environment which
promotes the evolution of high-level, target-based resistance [33].

Antiviral resistance is mainly an adaptive process, chiefly driven
by mutations [27]. In the case of antiretrovirals used in HIV treat-
ment, the primary mechanism of resistance to most Nucleoside
Reverse Transcriptase Inhibitors (NRTI) is through accumulation
of mutations near the drug binding site [34]. In Hepatitis B virus,
multiple missense point mutations have been linked to several
drugs, along with cross resistance observed between drugs [35].
Point mutations in the preS/S region are associated with vaccine
failure, immune escape, occult HBV infection and the occurrence
of hepatocellular carcinoma (HCC). Similarly, nsSNPS in the preC/
C region are related to HBeAg negativity, immune escape, and per-
sistent hepatitis, while those in the X region are implicated in pro-
moting HCC [36]. Likewise, antifungal resistance in Aspergillus
fumigatus is also primarily driven by mutations in the azole target
cyp51A gene [37], while resistance to artemisinin in P. falciparum
malaria is driven by multiple mutations in the Kelch 13 (K13) pro-
peller protein.

1.4. Genomics to identify point mutations linked to AMR

High throughput genomic platforms methods of next genera-
tion sequencing (NGS) technologies such as whole genome
sequencing (WGS) and genotyping arrays have enabled large scale
investigations of AMR for identifying resistance determining
genetic variants such as SNPs, INDELs, copy number variation,
and frameshift mutations [38–43]. The role of genetic variants, in
particular SNPs, have been implicated in drug resistance by several
studies [44–47]. Building on human complex disease applications
[48–50], genome-wide association studies (GWASs) have been
applied to reveal genotype - AMR phenotype associations, at a
locus or variant level. Furthermore, GWAS regression models allow
the estimation of mutation or genotype effect sizes (e.g. odds
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ratios). Examples of GWAS analysis in the context of AMR include
for Burkholderia multivorans [51], Mtb [11,52,53], severe malaria
[50] and fungal pathogens [54].

Bioinformatic approaches exploiting output from WGS tech-
nologies and GWAS analyses have enabled AMR prediction and
surveillance. Leveraging this wealth of information has enabled
novel applications of artificial intelligence and machine learning
(AI/ML) in the pan-genome identification of resistance genes, path-
ways, mechanisms [55–58], as well as resistance prediction [59–
61]. Bioinformatic approaches have also been used to identify
novel drug targets like Inositol-3-phosphate synthase (I3PS) in
Mtb, opening up new avenues in TB drug discovery [62].

Despite the immense utility provided by genomic analysis,
these methods lack the mechanistic underpinning required to
develop robust prediction tools [63] necessitating follow-up func-
tional studies [64]. In order to strengthen genomic analysis, it is
important to supplement genomic associations with functional
consequences of mutations on drug targets. One of the ways to
achieve this is via biophysical assessment of mutations on drug-
target structure and their interactions.

1.5. Biophysical consequences of point mutations on protein structure

The biophysical consequences of protein mutations are mainly
studied by assessing thermodynamic stability, which is often used
as a proxy for function [65]. This relationship has been clearly
demonstrated in the evolution of influenza nucleoprotein which
appears to be constrained to avoid low-stability sequences [66].
The synergy between the fields of protein biophysics and protein
evolution helps contextualise and rationalise concepts of thermo-
dynamic stability, mutational robustness, evolvability and epista-
sis in resistance development [67–69]. Missense mutations
resulting in a change in the amino acid may disrupt downstream
function by altering protein stability and its associated interactions
[70]. For example, three missense point mutations within the Mtb
gidB gene lead to gidB mutants with lower thermodynamic stabil-
ity and higher flexibility, considered to be a major driving factor in
the emergence of high-level streptomycin resistance [71]. Equally,
structural insights into the stability-function relationship have
highlighted the rationale for such a trade-off in the development
of antibiotic resistance [72].

1.6. Using structure to understand impact of point mutations linked to
AMR

Structural consequences of point mutations can provide func-
tional insights for resistance phenotypes. For example, point muta-
tions in the Penicillin-Binding Proteins confer resistance to b-
lactam antibiotics by making the active site amenable to hydroly-
sis, or reducing binding affinity for the antibiotic [73]. Structure
guided design demonstrated the potential of boronate-based PBP
inhibitors to overcome b-lactam resistance in Gram positive organ-
isms [74]. Similarly, missense mutations in the Mtb gidB gene (tar-
get for the antibiotic streptomycin) are responsible for drug
resistance through distortion of the binding pocket affecting SAM
(co-factor) binding [71]. Likewise, mutations inMtb pncA gene (tar-
get for the pro-drug pyrazinamide) are responsible for the loss of
enzyme activity [75]. The underlying mechanism of mutations in
the gidB gene conferring low and high-level streptomycin resis-
tance in Mtb were found to be associated with distortion in the
active site morphology by proximal and distal residues affecting
the overall structure [76]. Further, the prominent mutation
H275Y within the neuraminidase enzyme of the H1N1 pandemic
strain renders the drug oseltamivir ineffective due to distortion
in the binding pose of the drug within the active site [77]. Struc-
tural analysis of C580Y and R539T mutations in the K13 propeller
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gene (associated with artemisinin resistance) in P. falciparum
malaria revealed local conformational disruption in the mutant
and two solvent-exposed patches at conserved sites affecting pro-
tein–protein interactions [78].

Structural insights can aid in the absence of phenotypic data
[79] as well as provide a physical basis to a more comprehensive
understanding of mutational impact on the underlying biological
mechanisms. Therefore, computational tools measuring the bio-
physical effects of resistance linked mutations can aid mechanistic
understanding and inform functional studies. Understanding
mutational consequences with respect to global (drug-target struc-
ture) and local (protein–ligand, protein–protein and protein-
nucleic acid) stability effects [80] can be further extended to pre-
dict drug resistance for novel mutations [81,82].

Here, we review several of the principal computational tools
and methods currently available for measuring mutational conse-
quences, focusing on those tools which have been used to analyse
variation within a pathogen genome and their application in the
context of AMR. It is not meant to be an exhaustive list, with other
tools available centred on important questions like assessing can-
cer variations and other human mutations. As such, these go
beyond the scope of this review and have been extensively
reviewed elsewhere [83–85].
2. Computational tools measuring the effect of mutations

While no general pre-emptive predictor for AMR has been
developed, we and others have shown that computational tools
for understanding the underlying molecular mechanisms of muta-
tions can be used to identify likely resistant variants [79–82,86–
95]. This insight has even been used to guide medicinal chemistry
design of inhibitors less prone to resistance [96–99].

Different tools can be used to describe the effect of mutation on
protein function, which may provide an explanation for the AMR
phenotype. Some are primarily based on conservation or substitu-
tion matrices, and do not require a protein structure as input
(Sequence-based methods). Others consider the local environment
of the variant within the protein structure in their calculation
(Structure-based methods). In the presence of a known AMR-
related phenotype, these tools are useful as they provide mecha-
nistic insight which may explain how resistance is brought about
at the protein level. Therefore, when analysing specific proteins,
it can be beneficial to use different methodologies, as different
strategies may give complementary information. Summaries of
the types of methods are given below and represent some of the
principal tools currently available. Table 1 summarises the main
features of some of the currently available tools for analysing
effects of pathogen mutations.
2.1. Sequence-based methods

As these methods rely solely on the gene or protein sequence,
they are often useful in the absence of a known protein structure
or when homology modelling is not possible. The predictions from
these tools are generally based on sequence alignments, predicted
secondary structures and subsequent conservational trends. Most
methods determine a score with cut-offs leading to functional clas-
sification of mutations into deleterious or neutral. This functional
classification is not always applicable to AMR mutations, as vari-
ants may be ‘deleterious’ to protein conservation, but gain-of-
function through survival in the presence of drug. For example,
when analysing rifampicin resistant Mtb mutations we found that
they tended to cluster within more conserved regions of the rpoB
gene [80] (Portelli and Ascher, personal communication). Similar
analysis carried out on pyrazinamide [82] and bedaquiline [81],
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revealed that known resistant Mtb mutations were more likely to
lead to deleterious effects compared to susceptible variants in
the same gene [100]. However, when measuring mutational toler-
ance [101], strong evidence of positive selection for resistant muta-
tions was observed. Therefore, the utility of these tools in
understanding AMR mechanisms lies in the actual scores, where
a comparison of different scores across variants, accounting for
their genetic position can uncover important underlying mecha-
nisms and trends related to evolutionary conservation. We have
previously shown that this sequence information is also comple-
mentary to structural information, particularly within the context
of machine learning [102]. Several of the major methods which are
applicable across pathogens and human genomes are:

a. SIFT
The SIFT (Sorting Intolerant From Tolerant) can be used to anal-

yse missense mutations and INDELs. The SIFT scoring method com-
bines sequence alignment with a position-specific scoring matrix
(PSSM), which accounts for the likelihood of an amino acid to occur
within a specific position. The amino acid chemical properties are
also incorporated to determine a scaled probability of the mutation
(SIFT score), on which the output (tolerated or deleterious) is based
[100]. SIFT has been used to build the Variant Effect Predictor (VEP)
tool developed as part of the Ensembl 2018 project [103].

b. PROVEAN
PROVEAN (Protein Variant Effect Analyzer) is able to account for

(multiple) missense mutations and INDELs. It uses the BLOSUM62
substitution matrix as an amino acid probability matrix and com-
bines this with differences in sequence similarity between wild-
type and mutant sequences. The sequence context in which varia-
tion occurs is also considered, to represent environmental sur-
roundings and effects. A numerical score is generated for each
variant, which enables the functional classification into deleterious
or neutral [104]. PROVEAN scores have provided the evolutionary
basis for the recently deployed web-based tool SUSPECT-PZA [82]
which predicts pyrazinamide (PZA) resistance mutations in the
Mtb pncA gene.

c. SNAP2
SNAP2 (Screening for Non-Acceptable Polymorphisms v.2) char-

acterises the effect of all possible missense mutations as either
neutral or deleterious. It is a machine learning-based predictor
trained on neural networks. It also accounts for amino acid posi-
tion probabilities using position-specific independent counts,
based on the BLOSUM62matrix. This predictor considers other fea-
tures such as protein fold (Pfam, PROSITE) and functional annota-
tions (SWISS-PROT) during training, and as such is the tool that
spans the most comprehensive feature space [105]. As well as
forming part of the SUSPECT-PZA tool [82], SNAP2 scores have pro-
vided the evolutionary basis for a similar tool called SUSPECT-BDQ
[81]. This tool predicts the effect of missense mutations on the
anti-TB drug bedaquiline, reserved to treat MDR and XDR TB.

d. ConSurf
ConSurf estimates an evolutionary rate score for every position

across the sequence, unlike the tools above which base functional
classification on score thresholds. In the context of drug resistance,
it can help identify sites which are likely to lead to resistance if
mutated. The ConSurf score is based on a multiple sequence align-
ment, which generates probabilistic evolutionary models and phy-
logenetic links. Through this score, more conserved sites (having
slower evolutionary rates), which have important functional and
structural consequences are identified [106]. Consurf has been
used to estimate and visualise conserved regions within SARS-
CoV-2 [107], the SARS-CoV nsp12 polymerase domain [108], and



Table1
Sequence and structure-based tools that predict effect of pathogen missense mutations. The table is an up-to date list of currently available tools (as on 3rd August 2020). The type of method for each tool is specified using the following
code; S: sequence-based, St: structure-based, SA: sequence alignment, SS: sequence and structure, (St): structure if available. Other abbreviations used: MSA (Multiple Sequence alignment), EC (Evolutionary Conservation), NN (Neural
Network), SVM (Support Vector Machine), ML (Machine learning), NMA (Normal Mode Analysis), DG: Gibbs free energy in Kcal/mol, DDG: Change in Gibbs free energy in Kcal/mol, wt: wild-type, mt: mutant, Kwt: affinity of the wild-
type protein-ligand complex, Kmt: affinity of the mutant complex, RSA: Relative Solvent Accessibility (%).

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

SIFT: Sorting Intolerant
From Tolerant
REF: [100]

S EC http://sift-dna.org
Download: Yes

Calculates a normalised probability of
substitution score from multiple alignments
based on sequence homology using PSI-BLAST.
Removes close homologous sequences to
prevent over prediction of ‘‘tolerated”
substitutions.
Mutational effect on protein function is
classified as damaging (<=0.05) or tolerated
(>0.05).

Fasta sequence
or aligned
sequences
SNP list

Per-SNP:
1) SIFT score
2) Binary mutation
classification
3) Median sequence
conservation

Predictions for submitted SNPs, as well as all
possible SNPs (but without a score).
Positions are weighted equally within an
alignment. Alignments may be user defined.
Sequence conservation score provides a
useful estimate of whether the alignment
contains sufficient variation to support
classification.

PROVEAN: Protein
Variation Effect
Analyzer
REF: [104]

S EC http://provean.jcvi.
org/seq_submit.php
Download: Yes

Related sequences are collected with BLAST
(using CD-HIT) and clustered based on 75%
global sequence identity. The top 30 clusters of
closely related sequences form the supporting
sequence set, used to generate the prediction.
Delta alignment scores are computed for each
supporting sequence and averaged within and
across clusters to generate the final PROVEAN
score.
Predicted mutation effects are classified as
either deleterious or neutral based on a
predefined threshold (-2.5).
Available as:
PROVEAN Protein
PROVEAN Protein Batch*
PROVEAN Genome Variants*
*Human and Mouse only

Fasta sequence
Mutation list
(SNPs and
INDELs)

Per-mutation:
1) PROVEAN score
2) Binary mutation
classification

Predictions for submitted mutations only.
Predict effects for both SNPs and INDELs, but
not frameshift mutations.
Batch processing of multiple organisms.
The classification threshold is fixed in the
online version.
Stand-alone package only available for
PROVEAN Protein.

SNAP2:
Screening for Non-
Acceptable
Polymorphisms, v2
REF: [105]

S NN https://www.rostlab.
org/services/SNAP/
Download: Yes

Combines evolutionary information with an
expanded list of original SNAP features (amino
acid properties) including features such as AA
index, predicted binding residues and
disordered regions, residue annotations from
Pfam and PROSITE, etc.
Mutations are classified as either neutral or
effect based on predicted scores, between (-100
to 100) respectively.
The prediction algorithm is based on a NN
consisting of a feed-forward multi-layer
perceptron. 10-fold cross-validation is used to
create 10 models, each providing a single score
for each output class (neutral/effect). The final
score is calculated as the difference between
the average scores for each output class.

Fasta sequence For all possible substitutions:
1) Heatmap representing the
predicted effect
2) Multi column table with
Predicted Effect, Score and
Accuracy.

Predictions for all possible substitutions.
Prediction scores are accompanied by an
‘‘accuracy metric” to aid interpretation.
Uses predicted structural features.
Heatmap generated for visualisation of the
predictions.
Additional method (SNAP2noali) predicts
functional effects without alignments.
Automatic selection of best method (SNAP2
by default, and SNAP2noali for orphans) with
notification to users.

ConSurf
REF: [106]

S(St) EC https://consurf.tau.ac.
il/
Download: No

Estimates evolutionary conservation rate of
amino/nucleic acid positions based on the
phylogenetic relations between homologous
sequences.
Homologous sequences are searched using CSI-
BLAST, PSI-BLAST or BLAST, with closely related
sequences removed using CD-HIT with multiple
sequence alignments (MSA) generated by
MAFFT by default.

Amino acid/
nucleotide
sequence
Structure (if
available)
MSA (if
available)
Advanced
options:

Detailed output containing
conservation scores, MSA and
BLAST results.
Estimates mapped onto
sequence and structure.

Analysis at amino acid and nucleotide levels.
Improved HMMER algorithm to search for
homologous proteins. Results are
accompanied by confidence intervals.
Robust statistical approach to differentiate
between apparent conservation (short
evolutionary time) and genuine conservation
(purifying selection).
‘ConSeq’ mode used in the absence of a

(continued on next page)
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

MSA is used to construct phylogenetic
relationships using the neighbour joining
method. Position specific evolutionary rates are
calculated using the empirical Bayesian or
Maximum Likelihood methods.
Scores graded 1 (variable) to 9 (conserved) for
visualisation.

- homologue
database
- MSA
methods
- Phylogenetic
tree
- structural
data
- calculation
method
- evolutionary
substitution
model
Optional: user
defined MSA
and
phylogenetic
tree.

structure. Site-specific predictions of the
buried/exposed status of each position.

MAPP: Multivariate
Analysis of Protein
Polymorphism
REF: [110]

SA EC Download only:
http://mendel.
stanford.edu/
SidowLab/downloads/
MAPP/index.html

Combines MSA with 6 physicochemical
properties for amino acids.
Calculates a MAPP impact score for each
position within the MSA.
Sequences in the MSA are weighted to account
for phylogenetic correlation.
Physicochemical property scores for each
column along with their mean and variances
are calculated. The deviation of each property is
calculated for every possible variant and
converted to a single score.

Fasta format
MSA
Phylogenetic
tree

Multicolumn table giving the
physico-chemical
characteristics of each
position, MAPP impact score,
and a listing of ‘‘good” and
‘‘bad” amino acids.

Predictions for every possible substitution,
and median MAPP scores calculated for each
position.
Constructs a physiochemical profile rather
than an amino acid profile.
Demonstrates value of using only
orthologous protein in creating a
conservation profile.
Scores are continuous and interpreted in a
relative manner with higher MAPP scores
indicating more conserved areas.
Can be optimised for individual genes
including MAPP impact score threshold for
classification.
Requires user defined MSA and phylogenetic
tree.

PANTHER-PSEP: Protein
ANalysis Through
Evolutionary
Relationships-
Position Specific
Evolutionary
Preservation
REF: [149]

S EC http://
www.pantherdb.
org/tools/
csnpScoreForm.jsp
Download: Yes

Uses Hidden Markov Model (HMM) to align
sequence to protein families and subfamilies in
its database to calculate the evolutionary
preservation metric.
Uses variation over each alignment position to
estimate the likelihood of a coding SNP to cause
a functional impact on the protein.
Score represents the time (in millions of years
[my]) a given amino acid has been preserved in
the lineage, directly corresponding to the
likelihood of a functional impact. Score
classified into: Probably damaging, Possibly
damaging, Probably benign.

Fasta sequence
SNP list
Other
parameters:
Organism

Per-SNP:
1) Preservation Time:
PANTHER PSEP score
2) Message: Classification of
the PSEP score

Positions are weighted equally at all
positions within an alignment.
Profiles are subfamily specific if they
substantially differ from entire family.
User defined alignments are not possible
since scores are derived from HMMs
(PANTHER protein library) together with an
ontology of protein function (PANTHER/X – a
simplified form of GO) to make predictions.

FoldX suite
REF: [113]

St Empirical
force field

Download only:
http://foldxsuite.crg.
eu/

Empirical force-field used for calculating
mutational effects of stability, folding, and
dynamics on proteins and nucleic acids
DG (free energy of unfolding) is calculated
using a combination of empirical terms.
Empirical data (derived from protein
engineering experiments) is used for weighting
energy terms for stability calculations.

PDB file
SNP list
(including
chain ID)

Multiple output files where
requested.
Main output is present in ‘Dif_’’
files, containing DG of wt and
mt residues along with DDG of
mutation.
Output also contains changes
in the associated energy terms.

Command line interface.
Creates mutant structure models.
Can be used to analyse protein–protein and
protein-DNA interactions.
Calculates actual stabilities of wt and mt
structures, as well as change in stability upon
mutation (DDG). Easily integrated into
custom workflows.
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

Foldx BuildModel command calculates stability
changes upon mutation based on a full atomic
description of the protein structure.
Classification of DDG:
DDG > 0: Destabilising
DDG < 0: Stabilising

Optimised energy function for faster
calculations.
Requires registration to download.

PoPMuSic (v2.1):
Prediction Of
Proteins MUtations
StabIlity Changes
REF: [115]

St Physics-
based and
NN

https://soft.
dezyme.com/
Download: No

Stability change upon mutation calculated
using a linear combination of statistical energy
potentials, accounting for variation in volume
of the mutant residue.
Predictive models include an optimised set of
52 parameters, whose values are estimated and
optimised using a neural network. DDG of
point mutation is calculated by a linear
combination of 16 terms: 13 statistical
potentials, 2 terms for volume of wt and mut
residues, and 1 independent term.
Classification of DDG:
DDG > 0: Destabilising
DDG < 0: Stabilising
Additional ‘‘optimality” score is assigned for
each position in the protein sequence. It
indicates poorly optimised positions with
potential functional consequences.

Only accepts
currently
available
entries in the
PDB
SNP list in
three input
modes:
1) Systematic:
all possible
point
mutations
2) Manual:
single
mutation
3) File: SNP list

Multi-column table containing
secondary structure, solvent
accessibility (%) and predicted
DDG of mutations.

Optimised to rapidly calculate stability
changes of all possible mutations in mid-size
proteins.
Graphical output of sequence optimality
scores.
No option to upload user-defined PDB files.
Requires registration to download.

I-Mutant (2.0)
REF: [116]

S(St) SVM http://gpcr2.biocomp.
unibo.it/cgi/
predictors/I-Mutant3.
0/I-Mutant3.0.cgi
Download: No

Predicts stability effect of a point mutation, as a
classification or regression task. The
classification task predicts the direction of
change, while the regression estimator predicts
the DDG. Can be applied to both sequence and
structure.
RI value (Reliability Index) is computed from
the output of the SVM model.
Binary classification DDG:
DDG < 0: Decrease Stability
DDG > 0: Increase Stability
Ternary Classification DDG:
Large Decrease of Stability: DDG < -0.5
Large Increase of Stability: DDG > 0.5
Neutral Stability: 0.5<=DDG<=0.5

Fasta sequence
or PDB
code/file
Chain ID
Single SNP
Temperature
PH

Prediction
request:
Binary/
Ternary
classification

Table containing:
1) RSA (%) of mt residue
2) RI (Reliability Index)
3) Predicted DDG
3) Classification of DDG

Predicts both the direction and the estimate
of stability.
Experimental conditions of pH and
Temperature (Celsius) are considered in the
stability calculations.
Analyses a single mutation at a time only.
Output on the web server is better than
output requested via email.
Use of two different SVM models can lead to
discordance between the DDG sign and
classification, but is stated to occur only in
cases of low RI value.

STRUM: STRucture-
based prediction of
protein stability
changes Upon
single-point
Mutation
REF: [117]

S(St) ML https://zhanglab.
ccmb.med.umich.
edu/STRUM/
Download: Yes

Calculates DDG of mutation using gradient
boosting regression algorithm trained on 120
features divided into three groups (sequence,
threading and structure).
Classification of DDG:
DDG < 0: Destabilising
DDG > 0: Stabilising

Fasta sequence
or PDB file
SNP list in two
modes:
1) Single or
multiple SNPs

2) Systematic:
All possible
SNPs for user
defined amino
acid segments.

Results available via e-mail
only.

Multi-column table containing
DDG for SNPs.

Combines sequence profiles and 3D features
3D Structure modelling of query protein
sequence by iterative threading assembly
refinement simulations
Computationally expensive with relatively
long runtime.

MAESTRO:
Multi AgEnt
STability pRedictiOn

St Multi
agent: ML
methods
and

https://pbwww.che.
sbg.ac.at/maestro/
web

Multi-agent method where 3 ML methods i.e
Artificial NN, SVM and Multiple Linear
Regression. are combined to generate a
consensus prediction.

PDB code/file

Input mode:
1) Specific

Input modes 1 & 2
DDG predictions and
confidence intervals.

Ability to analyse mutations independently
or in combination

DDG predictions are accompanied by

(continued on next page)
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

REF: [150] statistical
scoring
functions

Download: Yes Each agent (ML method) uses 9 input values
divided into two categories: SSF functions and
protein properties (size, mutational
environment, etc.).

Classification of DDG:
DDG > 0: Destabilising
DDG < 0: Stabilising

mutations

2) Sensitivity
profile: all
possible
mutations

3) Scan for
destabilising
mutations

4) Stability of
Disulphide
bonds

Graphical display.
confidence intervals.

High throughput scanning for all possible
point mutations.
Specific mode for prediction of stabilising
disulphide bonds.

mCSM suite:
mutational Cut-Off
Scanning Matrix

REF: [122]

St Graph-
based and
ML

Protein Stability (PS),

Protein-Protein (PP),

Protein-DNA

(P-NA)

http://biosig.unimelb.
edu.au/mcsm/

Download: No

Uses graph-based methods to calculate atomic
pairwise distance surrounding the wt amino
acid. Mutational impact is captured based on a
change in the atomic pharmocophore count
resulting from the point mutation. Together,
this forms the mCSM-signature, and is used to
train predictive models for analysing
mutational impact on structure stability.
Predicted DDG < 0 relates to destabilising, and
DDG > 0 relates to stabilising mutational
effects.

Ternary Classification of Destabilising effect:
Mild: �1 < DDG < 0
Moderate: �2 < DDG < -1
High: DDG < -2

Ternary Classification of Stabilising effect:
Mild: 0 < DDG < 1
Moderate: 1 < DDG < 2
High: DDG > 2

PDB code/file

SNP list

Chain ID

Input modes:
1) Single
mutation

2) Mutation
list

3) Systematic:
all possible
mutation for a
single residue

Input mode 1:
1) Predicted DDG

2) Classification of mutational
stability change

Input modes (2) & (3):
Multi-column table with
predicted DDG and RSA.

Predicts both the direction and the estimate
of stability.
Mutant structure is not
required.

webGL structural visualisation
for input mode 1.

Works at an atomic level.

Demonstrates correlation between atomic-
distance pattern of the wild-type residue
environment and mutational impact.

Calculates overall stability of protein and
interactions.

mCSM-lig: mutational
Cut-Off Scanning
Matrix on ligand
affinity

REF: [88]

St Graph-
based and
ML

Protein-ligand affinity
(mCSM-lig):

http://biosig.unimelb.
edu.au/mcsm_lig/
prediction
Download: No

Based on the mCSM graph-based signatures (as
above) with the addition of small-molecule
chemical features and ligand
physicochemical properties to capture
mutational changes.

Predictive models trained on a representative
set of protein–ligand complexes.

Mutational impact on affinity is calculated as
the log (ln) affinity fold change as below:
ln(Kwt) - ln(Kmt) = ln (fold-change)

Classification of ln (fold-change):
ln (fold-change) < 0: Destabilising
ln (fold-change) > 0: Stabilising

PDB code/file

Single SNP

Chain ID

3-letter ligand
ID

wt-affinity
(nano Molar
(nM))

Log affinity fold change

Distance to ligand (Angstroms)

DUET stability change
(Kcal/mol)

Binary classification of affinity
and stability changes.

Predicts both the direction and the estimate
of stability.
Returns both DUET and ligand affinity
changes, along with ligand distance to site.

Measures both global and local stability
effects.
Analyses single mutation at a time.

Returns a change in affinity value.

Less reliable results for sites > 10 Å from
ligand.

Rosetta Flex_ddG

REF: [151]

St All-atom
energy
function

Download only:
https://www.
rosettacommons.
org/software/license-

Based on a mixed physics and knowledge-based
approach. Uses all-atom energy function,
parameterized from small molecule and X-ray
crystal structure.

Customized
PDB file

Ligand

Each run outputs db3 file
containing the changes in the
main components of the
energy function, DG wt, DG

For a reliable prediction, at least 35 runs per
mutation are required, with each run taking
between 2 and 4 h.
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

and-download
The Flex_ddG protocol models changes in the
DDG upon mutation at a protein–protein or
protein–ligand interface using the ‘backrub’
algorithm. This algorithm is used to sample
conformational space and produce an ensemble
of wt and mt models to estimate the interface
DDG values.

Ternary Classification of DDG:
Destabilising: DDG >=1
Neutral: �1 < DDG < 1
Stabilising: DDG<= �1

parameter file

Customized
XML protocol
file

Mutation list

Chain ID

mt, and the DDG upon
mutation.

Access to HPC may be required for large
number of mutations.

Protocols are written in XML format.

Requires license to download.

INPS-MD

Impact of Non-
synonymous
mutations on
Protein Stability-
Multi Dimension

REF: [141]

S/St SVM
regression

https://inpsmd.
biocomp.unibo.it/
inpsSuite

Download: No

Calculates DDG of mutation on sequence and
structure.

The sequence-based predictions are derived
from seven descriptors to account for
evolutionary information (INPS), while two
additional structural features (RSA and energy
difference between wt and mt structures) are
included for the structure-based predictions
(INPS-3D).

SVM regression is used to map the sequence
descriptors to the DDG values.

Classification of DDG:
DDG < 0: Destabilising
DDG > 0: Stabilising

Fasta
sequence/PDB
file

SNP list

Chain ID
(INPS-3D only)

Per SNP in list:

Predicted DDG

Predicts both the direction and the estimate
of stability.
Can operate on both sequence (INPS) and
structure (INPS-3D)

Accounts for anti-symmetric property of
variation i.e DDG (A->B) = - DDG (B->A).

DeepDDG/
iDeepDDG

REF: [142]

St NN/
Ensemble
method

http://protein.org.cn/
ddg.html

Download: No

Calculates DDG of mutation using NN trained
on nine categories of sequence and structural
features.

Operates independently as ‘DeepDDG’, and in
an integrated manner as ‘iDeepDDG’. In the
latter, predictions from three methods: mCSM,
SDM and DUET are fed into the concatenation
layer of the NN to generate the consensus
prediction.

Classification of DDG:
DDG < 0: Destabilising
DDG > 0: Stabilising

PDB code/file

Network
model:
-DeepDDG
-iDeepDDG

SNP list in two
modes:

1) Single or
multiple SNPs

2) All possible
mutations

Per SNP/all possible SNPs:

Predicted DDG

Predicts both the direction and the estimate
of stability.

Accounts for anti-symmetric property of
variation i.e DDG (A->B) = - DDG (B->A).

Runs in independent or integrated modes.

‘DeepDDG’ allows high throughput scanning
for all possible point mutations with
relatively fast computation time.

For running ‘iDeepDDG’, user must provide
predictions for each mutation from the
mCSM DUET server.

DUET
REF: [102]

St Ensemble
method:
SVM

http://biosig.unimelb.
edu.au/duet/

Download: No

Predicts stability effects upon mutation on
proteins.

Combines predictions from two
complementary methods: mCSM and Site
Directed Mutator (SDM) in an optimised
predictor to generate the DUET prediction.

PDB code/file

SNP list

Chain ID

Input mode1:
Single

Input mode 1:
1) Predicted DDG from mCSM,
SDM and DUET.

Input mode 2:
Multi-column table with
predicted DDG from mCSM,
SDM, DUET and RSA.

Predicts both the direction and the estimate
of stability.
Mutant structure is not
required.

webGL structural visualisation for input
mode 1.

(continued on next page)
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

The optimised predictor is generated using SVM
trained with Sequential Minimal Optimisation.

Classification of DDG:
DDG < 0: Destabilising
DDG > 0: Stabilising

mutation
Input mode 2:
Systematic: all
possible
mutation for a
single residue

ELASPIC: Ensemble
Learning Approach
for Stability
Prediction of
Interface and Core
mutations

REF: [124]

(St) Ensemble
method: ML

http://elaspic.kimlab.
org/

Download: No

Predicts stability effects upon mutation in both,
domain cores and domain-domain interfaces.

Combination of semi-empirical energy terms,
sequence conservation, and a wide variety of
molecular details with a Stochastic Gradient
Boosting of Decision Trees (SGB-DT) algorithm.

Uses a combination of sequence, molecular and
energy features including prediction scores
from other tools.

Uniprot
Protein ID or
PDB structure

SNP list

Multi-column table, with the
main output being DG of wt
and mt structures, and DDG of
mutation.

Results are downloadable.

FoldX generated mutant
structures in pdb format

Jmol applet showing
superimposed wt mt
structures.

Can be run as a single or multiple mutations
and Protein-protein interactions

Option to filter results based on additional
criteria.

Non-human proteins may take longer to run.

An interactive connectivity network showing
the affected protein–protein interaction
mutations.

DynaMut

REF: [118]

St Ensemble
method:
NMA

http://biosig.unimelb.
edu.au/dynamut/

Download: No

Predicts stability effects based on protein
dynamics resulting from vibrational entropy
changes.

Integrates mCSM signatures and normal model
analysis. Combines mutational effect from 3
structure-based prediction tools to generate a
consensus prediction.

Classification of DDG:

DDG < 0 Destabilising
DDG > 0: Stabilising

PDB code/file

Single SNP/
SNP list

Chain ID

NMA based predictions

Other structure-based
predictions included.

Accounts for protein molecular motion and
flexibility.

Easy and detailed visualisation of results
including interatomic interactions,
deformation and fluctuation analysis.

Returns a change in stability.

Computationally expensive with relatively
long runtime.

T.Tunstall,S.Portelli,J.Phelan
et

al.
Com

putational
and

Structural
Biotechnology

Journal
18

(2020)
3377–

3394

3386

http://elaspic.kimlab.org/
http://elaspic.kimlab.org/
http://biosig.unimelb.edu.au/dynamut/
http://biosig.unimelb.edu.au/dynamut/


T. Tunstall, S. Portelli, J. Phelan et al. Computational and Structural Biotechnology Journal 18 (2020) 3377–3394
the S2 subunit in MERS-CoV isolates [109] to aid antiviral
strategies.

e. Mapp
MAPP (Multivariate Analysis of Protein Polymorphism) predicts

the functional impact of all possible missense mutations. It combi-
nes evolutionary conservation and physicochemical information. It
uses data from multiple sequence alignments from orthologs to
estimate a mean for each of the six physicochemical properties
(hydropathy, polarity, charge, volume, and free energy in alpha
helices and beta strands) for each position. A single composite
value for each physicochemical value is generated based on the
deviation from the mean for all twenty amino acids. High MAPP
scores indicate highly conserved sites, which in the context of drug
resistance can indicate resistance promoting sites [110]. MAPP has
been used to develop the ProPhylER [111] tool, used for proteome
wide investigation of mutational impact on eukaryotic protein.

2.2. Structure-based methods

When analysing missense mutations, structure-based methods
can offer a 3-dimensional explanation of molecular consequences
of mutations, which may not be evident from sequence analysis
alone [86,89]. These methods include the analysis of the protein
structural and functional consequences of mutations, including
those on protein folding, stability, dynamics, and alterations to
interactions with normal ligands. Protein structure information
can be incorporated through rule-based or machine learning based
approaches (see Table 1). As acquired resistance can develop
through missense mutations, analysing their effects can inform
on underlying mechanisms of resistance. In previous analyses,
we observed that known resistance mutations arising in the
drug-target tend to significantly reduce functional affinities, such
as nucleic acid affinity [80–82,93–95]. Resistance mutations in
drug activators are associated with large decreases in protein sta-
bility or activity [79,80], and those in drug exporters tend to
increase protein flexibility to promote drug export [91]. To run
these predictors, a crystal structure of the protein or a homology
model is required. A summary of the principle methods and appli-
cations are described below:

2.2.1. Measures of protein stability
The introduction of resistance-causing missense mutations to a

protein structure rarely comes at a negligible cost to protein stabil-
ity, whether decreasing local stability and affecting protein folding,
or increasing local stability and compromising wild-type protein
dynamics [112]. Therefore, quantifying the effect of missense
mutations on stability presents a good starting point in under-
standing the basic variant protein changes. Computational tools
predicting thermodynamic stability of a protein do so by estimat-
ing the Gibbs free energy (DG Kcal/mol). The subsequent impact of
a point mutation on protein stability is then estimated as a change
in the Gibbs free energy (DDG Kcal/mol) between wild-type and
mutant proteins, or vice versa. Additionally, these tools provide
both the extent (the actual value of DDG) as well as the direction
(destabilising/stabilising) of the resulting mutational effect. Differ-
ent in silico protein stability predictors are available, of which we
highlight a few, based on the methodologies considered in their
approximations. Further details for these (and additional) methods
can be found in Table 1.

a. FoldX is an empirical-based predictor which provides infor-
mation on how a single point mutation alters the stability of
a protein. It constructs structure models of the protein with
the mutation and estimates the stability (DG) associated
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with the mutant protein. Estimation of stability is based on
intramolecular interactions such as van der Waals’ forces,
solvation energies, interactions with water, hydrogen bonds,
electrostatic effects and main and side chain entropies.
Mutational impact is calculated through a weighted summa-
tion of all the intramolecular interactions, and estimated as a
change in stability (DDG) between mutant and wild-type
structures. In this way, DG for each mutant protein, DDG
upon mutation, and the contribution of each intramolecular
interaction, are made available to the user. The extent of the
mutational impact (the value of DDG) as well as the direc-
tion of change (DDG < 0: stabilising, DDG > 0: destabilising)
are captured by the predictions [113,114].

b. PoPMuSic (v2.1) is a statistical method which uses
knowledge-based potentials to predict mutational impact
on the stability of a protein. It returns the predicted DDG
of a single point mutation of a protein and is able to system-
atically analyse this for all possible point mutations for a
given protein. Additionally, an ‘optimality’ score for each
amino acid in the sequence with respect to stability is
returned. The optimality score identifies sites of structural
weakness i.e. clusters of residues that are considered non-
optimal from an evolutionary perspective. Therefore, muta-
tions with desired stability properties (DDG < 0: stabilising,
DDG > 0: destabilising) and poorly optimised positions can
be identified. These sites can relate to the protein’s function,
and be used for rational protein design and other experi-
mental studies. In PoPMuSic, a protein is represented as a
statistical potential based on individual residue properties
such as sequence position, conformation, solvent accessibil-
ity, or a combination of inter-residue distances. The optimal-
ity score is computed from the sum of the predicted DDG of
all stabilising mutations at a given position in the sequence.
Since the majority of the mutations have a destabilising
effect, this score is expected to be close to zero for most posi-
tions in the sequence, with high negative values indicating
sites with strongly stabilising mutations and/or several sta-
bilising mutations with mild effect [115].

c. I-Mutant (v2.0) is an ML based predictor which computes
mutational stability changes using support vector machines.
It provides an estimate of the DDG upon a single point
mutation based on protein structure (or sequence). The
resulting DDG highlights the extent as well as the direction
of impact (DDG < 0: destabilising, DDG > 0: stabilising) on
the protomer. The predictions consider the mutated residue
environment as a 9 Å region (structure) and a 19-residue
window (sequence) surrounding the mutation. This environ-
ment is combined with experimental pH and temperature
conditions, enabling the user to define different pH and tem-
perature conditions on a case-by-case basis to better encom-
pass protein biological conditions [116].

d. STRUM is an ML based predictor and returns an estimate of
the DDG of a single point mutation on 3D models based on
wild-type sequences. It can be used to analyse single muta-
tions or all possible mutations within a specified region of
the protein. Similar to methods above, both the magnitude
of change as well as the direction (DDG < 0: destabilising,
DDG > 0: stabilising) are encapsulated in the predictions.
The 3D models are generated using iterative threading
assembly and combined physics- and knowledge-based
energy functions. Predictors are trained based on 3 groups
of features: sequence, threading, and I-TASSER structure. A
total of 120 features are trained through Gradient Boosted
Regression Trees (GBRT) to overcome overfitting effects
[117].
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2.2.2. Measures of global and local stability within a single framework
The mCSM (mutation Cut-off Scanning Matrix) suite of compu-

tational tools accounts for the changes in protein stability dynam-
ics [118], and interactions with other proteins [119], ligands [88]
and nucleic acids [120] upon introduction of missense mutation.
It estimates change in stability (DDG) and change in binding affin-
ity of the ligand. Measuring the impact of missense mutations
beyond protein stability, by looking at functional affinities, is cru-
cial to characterise the mechanisms of AMR-associated mutations.
This is because affinities to ligands, nucleic acids and other pro-
teins are highly dependent on specific interaction sites, irrespec-
tive of protein stability changes. Functionally, protein affinity
changes to its ligand is especially important in AMR, as it enables
the identification of mutations directly affecting ligand binding.
The extent of this importance, however, relates to the drug mode
of action, meaning that other functional affinities should also be
considered to identify mechanisms beyond direct ligand binding.
The mCSM suite of tools quantify these stability and functional
measurements using graph-based signatures [121], which sum-
marise the global environment of the protein as a series of nodes
for each atom, and represents the local environment at the muta-
tion site as edges on the graph between the nodes at similar dis-
tances from the mutation. A pharmacophore count is appended
to these signatures to account for any physicochemical changes
imparted by the missense mutations [122] (Fig. 1). Through this
graph-based network, the impact of a missense mutation over
the whole protein can be calculated. All methods within the mCSM
suite are based on ML approaches in quantifying missense muta-
tional changes, and are freely available via their respective web
servers.

Ensemble methods like DUET [102] generate a consensus pre-
diction based on two different tools, while the meta-predictor tool
by Broom, et al. [123] combines predictions from eleven available
tools. Similarly, the ELASPIC method [124] combines semi-
empirical energy terms, sequence conservation, and several molec-
ular features to predict mutational effect on stability and affinity.
Likewise, DynaMut [118] combines graph-based structural predic-
tions with Normal Mode Analysis to account for protein dynamics
and molecular motion to assess mutational impact. Consensus
approaches have the advantage of improved accuracy over individ-
ual tools, but are tightly coupled and sensitive to their availability.

2.2.3. Insights from molecular dynamics simulation experiments
Despite not providing direct thermodynamic measures of muta-

tions, molecular dynamics (MD) remains an invaluable technique
for analysing mutational effects on protein conformational move-
ment, especially considering that other techniques run on static
protein structures. In the context of AMR, MD simulations enable
comparison between wild-type and mutant protein trajectories.
Visualising these differences can highlight co-occurring mutations
and sites with local protein rigidification. Different MD techniques
may be used, depending on computational cost and the level of
throughput required.

An all-atom MD method has been adopted to study co-
occurring missense mutations V82F/I84V (known to confer resis-
tance to target inhibitors) within HIV-1 protease [125]. This analy-
sis enabled the characterisation of an equilibrium shift imparted by
these mutations from a closed to a semi-open conformation as a
possible cause of drug resistance [125]. More recently, the effect
of G140S mutation on HIV-1C Integrase (IN) protein provided
insight into dolutegravir resistance. Decreased stability of IN and
higher flexibility around the 140 loop region in the mutant system
reduced drug affinity [126]. Similarly, MD simulations also exam-
ined artemisinin resistance in malaria. Mutation R539T and
C580Y in the P. falciparum K13 region revealed local structural
destabilisation of the Kelch-repeat propeller (KREP) domain but
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not the overlapping shallow pocket [78]. In fungal and bacterial
enzymes, MD investigation of the interaction of triazole drugs with
their target, CYP51, has highlighted the potential to design inhibi-
tors with greater ortholog specificity. While protein-fluconazole
interactions were strongly mediated by ligand-HEME interactions
in fungal enzymes, the same was mediated by polar interactions
in the bacterial counterpart (CYP51 Mtb) [127]. Stereochemical
changes, rather than electrostatic effects, of ten point mutations
in Mtb katG led to isoniazid (INH) resistance by restricting access
of the drug to its catalytic site [128]. Likewise, conserved motions
and unbinding events of 82 point mutations in Mtb pncA, linked to
PZA resistance, were also discerned through MD simulations. Cou-
pled expansions and contractions of the pncA lid and the side flap
were observed in the unbinding of PZA in some mutants, while
destabilisation of the ‘‘hinge” or nearby residues facilitated lid
opening and PZA release from the active site [129].

MD studies have also shed light on AMR mutations in biological
pathways. For example, mutations Y59H, M84I and E160D within
the RamR homodimerization domain on ramA promoter were
shown to affect structure stability and binding affinity. These
mutations led to dysregulation of the multidrug efflux pump
RND, and consequent drug resistance in Salmonella enterica [130].
Another example, where extensive modifications modelled by
MD simulations of six missense mutations in Thymidylate syn-
thase A (ThyA), a key enzyme in the Mtb folate pathway, provided
a deeper understanding of Para-aminosalicylic acid resistance
[131]. Likewise, investigation of inhA-INH resistance in Mtb
revealed a ligand ‘‘locking” mechanism together with increased
vibrational coupling between inhA cofactor binding site residues,
responsible for the inhibitory function of the wild-type complex.
This insight provided an explanation of how the resistant mutation
S94A circumvents these subtle changes in global structural dynam-
ics, with downstream effects in the fatty acid synthase pathway
[132]. All-atomMD simulations have also been used to understand
the mechanism of anti-microbial peptides within biofilms, which
can potentially serve as alternative therapies in the presence of
AMR [133].

Although, an all-atom MD approach offers detailed analysis of
specific mutations, it is often computationally expensive making
it impractical for large mutational datasets. In such cases, an
approximated MD technique, known as normal mode analysis
(NMA) can be adopted. NMA uses harmonic motion to summarise
protein dynamics arising from vibrational entropy changes. This
approach is the basis for DynaMut [118] (part of the mCSM-suite
of computational tools described above) which predicts missense
mutational impact on proteins while accounting for their molecu-
lar motions.
3. Applications of the computational tools for characterising
drug resistance in TB and other infectious diseases

The tools described above for measuring the effects of muta-
tions within a gene have been used to provide a molecular under-
standing of how variants can affect pathogen drug resistance in
Mtb [80,92] and P. vivax [134]. In all cases, the different tools have
provided complementary information to describe mutational
effects under selective pressure as a balance of fitness costs across
different protein properties.

To demonstrate the utility of this approach, we explore in more
detail Mtb variants in two genes katG (resistance to isoniazid) and
rpoB (resistance to rifampicin), which have been associated with
drug resistance from GWAS analyses [11,45]. Most katG mutations
conferred resistance through a disruption of protein stability [80].
Functionally, it is thought that Mtb renders the non-essential KatG
unstable to impede the activation for prodrug isoniazid, thereby



Fig. 1. A summary of mutational Cut-off Scanning Matrix (mCSM) method and its application in measuring mutational effects on protein stability (mCSM DUET), protein–
protein interaction (mCSM-PPI, mCSM-PPI2), protein-nucleic acid (mCSM-NA) and protein–ligand affinity (mCSM-lig).
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conferring resistance. When considering rifampicin resistant muta-
tions within gene rpoB, we found that most mutations disrupt pro-
tein–protein interactions, leading to a loss in nucleic acid affinity.
Structurally, the effects of these mutations within RpoB, the b-
subunit of RNA polymerase, are compensated for by mutations
within RpoC, which is the b0 subunit, thereby restoring normal
functioning of the RNA polymerase, with an added resistance prop-
erty [135–137].

Within this analysis, two distinct classes of mutations were
observed: (i) those having high allele frequency within GWAS,
but which hadmild overall effects on protein stability and affinities
to ligands, other proteins and nucleic acids, and (ii) those having
lower allele frequency but more drastic effects on protein proper-
ties. Theoretically, it is thought that a high mutational incidence of
class (i) mutations is a result of lower likelihood of evolutionary
purging when compared to class (ii) mutations, which is based
on the structural and functional effects imparted at the protein
level. Mutations from each class were also seen to co-occur as hap-
lotypes, where they are thought to compensate for each other in
terms of protein fitness [80].

Using 571 missense SNPs in katG across 19265 Mtb isolates, we
tested for an association between mutation odds ratio and allele
frequencies with the biophysical effect on protein stability
(Fig. 2). This analysis suggests a higher proportion of destabilising
mutations (~84%, n = 480 vs ~55.5%, n = 105) with only a small pro-
portion of mutations lying within 10 Å of the active site (~10%,
n = 57 vs ~15%, n = 28) highlighting the importance of allosteric
mutations in INH drug resistance. There is a weak negative corre-
lation between protein stability and odds ratio (q = �0.15,
P < 0.001), and between protein stability and allele frequency
(q = 0.31, P < 0.001) (Fig. 3a). Analysis of biophysical effects (desta-
bilising vs stabilising) of katG mutations by Mtb lineage revealed
statistically significant differences (Fig. 3b, Kolmogorov-Smirnov
P � 1.3e-08).

This type of analysis can be implemented on proteins encoded
on plasmids (a common vector of resistance), where this approach
has been used to explain the evolution of carbapenem resistance in
Acinetobacter baumannii [91].
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4. Computational structural tools predicting drug resistance

A limitation of current genomic sequencing-based resistance
diagnostic approaches is that they require pre-existing knowledge
about the phenotypic consequences of a variant. This means we
often cannot detect it until it has been established within the pop-
ulation. By contrast, we have shown that using these tools we can
pre-emptively identify likely drug resistant mutations in the
absence of previous genomic data. These insights are of particular
relevance for new drugs without extensive clinical data, and drugs
which lack approved diagnostic tests. We have therefore used this
approach to explore resistance against the TB drugs BDQ [81] and
PZA [82]. The use of our PZA predictive model within the clinic was
the first successful translational application of structural guided
resistance detection. This revealed the power of combining struc-
tural interpretation within existing diagnostic sequencing frame-
works [93]. Additionally, other ML based approaches have also
been used in predicting drug resistance in Mtb [56,138].
5. Designing better antibacterial drugs

It has been suggested that a way to minimise the development
of resistance is by making compounds that interact similarly to a
natural ligand [139]. The rationale being that this would lead to
any resistance hot-spot having a higher fitness cost associated with
it. This led to one of the first successful structure-guided drug dis-
covery projects on neuraminidase inhibitors. Computational tools
aid molecular characterisation of novel genomic variants, which
provide opportunities to pre-empt likely resistant mutations.
Anticipating these variants before they arise in a population can
inform the drug discovery pipeline, especially in developing com-
pounds less prone to resistance emergence. Such an approach
has already been used as part of the drug development efforts
against the TB drug target IMPDH [99]. The mutation predicted
was the only resistant variant detected in subsequent in vitro resis-
tant assays. Further, compounds designed to avoid this hot-spot
were less prone to develop resistance [96–98]. This type of analysis
complements the development of new tools that integrate geno-



Fig. 2. Structure of katG in complex with the drug isoniazid (INH) coloured by 378 mutational positions linked to 571 SNPs. Areas marked in pink are associated with one or
more mutations. HEM is denoted in red, INH is denoted as spheres. Parts a) and b) denote the structure in two different orientations, rotated by 180�. Figure rendered using
UCSF Chimera, Version 1.13.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Relationship between the impact of katG mutations on Protein stability (DUET) with Odds Ratio (OR), Allele Frequency (AF) and Mtb lineages. a) Pairwise correlations
between DUET protein stability and GWASmeasures of OR and AF of 566 mutations (total number of mutations with associated OR). The upper panel in both plots include the
pairwise Spearman correlation values (denoted by q) along with their statistical significance (***P < 0.001). b) Lineage distribution of samples with katG mutations showing
Mtb lineages 1–4 according to DUET protein stability ranging from red (-1, most destabilising) to blue (+1, most stabilising). The number of samples within each lineage are:
Lineage 1 (n = 2448), Lineage 2 (n = 6813), Lineage 3 (n = 5020) and Lineage 4 (n = 2739). The number of samples contribute to the 566 katGmutations. Figure generated using
R statistical software, version 3.6.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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mic and structural data such as the Target-Pathogen online
resource [140], which prioritises candidate drug targets in ten clin-
ically important and diverse pathogens. This approach underscores
the importance of structural data in guiding the drug-discovery
process [140].

6. Summary and outlook

Large scale genomic studies have enabled identification of
mutational associations with a resistance phenotype, useful for
surveying the presence and spread of resistance to a wide range
of antimicrobials. However, understanding the functional effects
of putative mutations is crucial. Computational tools accounting
for anti-symmetric properties of variation i.e. DDG (A->B) = -
DDG (B->A) [118,141,142] are able to achieve improved prediction
performance complementing experimental studies [85].
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Genomic and structural analysis of resistance can infer muta-
tional effects with therapeutic consequences before they become
fixed in a pathogen population. This has implications for both
infection surveillance and in the development of next generation
drugs. The latter is of particular relevance to fragment-based drug
discovery (FBDD) [143,144]. For the past 20 years, this has been a
powerful route to new therapeutics, for example, in the develop-
ment of vemurafenib for late-stage melanoma [145], and is
increasingly being applied in the search for new antimicrobial
drugs [146–148]. FBDD uses a library of low molecular weight,
low affinity binding molecules (fragments) to probe a target pro-
tein. This approach helps to identify areas that are receptive to
binding. Biophysical and structural biology techniques are used
to determine which fragment binds, and how. The target can then
be used to guide an expansion of the fragment to a higher molec-
ular weight and higher affinity binding molecule. An important
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step in this process is elaborating fragments that bind, to generate
compounds that can be taken through to clinical testing. This is the
stage at which crucial decisions are made about the regions of the
drug target to exploit. However, pathogen tolerance is seldom con-
sidered, with direct consequences on drug effectiveness or efficacy.
Current methods of analysing the effects of mutations either oper-
ate at the gene level (identifying known markers of resistance) or
focus on a specific effect of the mutation (protein stability) without
directly relating it to a resistance phenotype. Combining genomic
results with structural analysis permits consideration of muta-
tional impact on a potential drug binding region, providing
informed decisions regarding drug efficacy. This has the potential
to help the design of better antimicrobial drugs.
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