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Abstract

Motivation: A lack of accurate computational tools to guide rational mutagenesis has made affinity maturation a re-
current challenge in antibody (Ab) development. We previously showed that graph-based signatures can be used to
predict the effects of mutations on Ab binding affinity.

Results: Here we present an updated and refined version of this approach, mCSM-AB2, capable of accurately model-
ling the effects of mutations on Ab–antigen binding affinity, through the inclusion of evolutionary and energetic
terms. Using a new and expanded database of over 1800 mutations with experimental binding measurements and
structural information, mCSM-AB2 achieved a Pearson’s correlation of 0.73 and 0.77 across training and blind tests,
respectively, outperforming available methods currently used for rational Ab engineering.

Availability and implementation: mCSM-AB2 is available as a user-friendly and freely accessible web server provid-
ing rapid analysis of both individual mutations or the entire binding interface to guide rational antibody affinity mat-
uration at http://biosig.unimelb.edu.au/mcsm_ab2

Contact: david.ascher@unimelb.edu.au or douglas.pires@unimelb.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Antibodies (Abs) are central components of our immune system that
bind specifically to their target antigens in order to elicit an immune
response. This interaction between an Ab and its antigen is mediated
by a myriad of non-covalent interactions made by the complementary
determining regions (CDRs) of the Abs with a specific epitope on an
antigen. This ability to bind to a wide variety of targets, including
those traditionally considered undruggable, in a highly specific and
selective manner has led to increasing interest in their use as therapeu-
tics for a broad range of diseases including several types of cancer
(Elgundi et al., 2017) and rheumatoid arthritis (Tanaka et al., 2014).
Since the first approval of monoclonal Ab, the significant improve-
ment in Ab engineering has led Abs to become best-selling drugs
accounting for over half of the therapeutic market (Urquhart, 2018).

Ab development often requires optimization of its stability, solu-
bility, selectivity, affinity and immunogenicity. Achieving the desired
properties can often become a major challenge, considering the large
number of possible variations in Abs, and with each potentially
affecting multiple biological properties. One of the early steps in the

development of effective Ab therapies is the engineering of binding
specificities and selectivities, which has traditionally been inspired
by the natural biological process of affinity maturation, with rounds
of mutations within the CDR loops explored. This process can be
time-consuming, and is inherently a random and error-prone pro-
cess. Recent examples, however, have shown how the computation-
ally guided rational engineering of Ab-binding affinities can
dramatically improve this process (Kiyoshi et al., 2014; Sefid et al.,
2019).

A number of different computational approaches which use an
available crystal structure to guide Ab design and optimization have
been developed (Roy et al., 2017). A systematic evaluation of the ac-
curacy of these approaches to predict the change upon mutation in
binding affinity highlighted the limited performance of existing
tools, and the challenging nature of this problem.

In a previous work, we have adapted the concept of graph-based
signatures which can efficiently represent the physicochemical proper-
ties and geometry of surrounding environment of the wild-type and
mutant residues to accurately predict the effects of mutations in terms
of protein stability (Pandurangan et al., 2017a; Pires et al., 2014a, b;

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1453

Bioinformatics, 36(5), 2020, 1453–1459

doi: 10.1093/bioinformatics/btz779

Advance Access Publication Date: 26 October 2019

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/5/1453/5607734 by U
niversity of M

elbourne user on 03 N
ovem

ber 2020

http://orcid.org/0000-0002-3004-2119
http://biosig.unimelb.edu.au/mcsm_ab2
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz779#supplementary-data
https://academic.oup.com/


Rodrigues et al., 2018b) and interactions with other proteins (Pires
et al., 2014b; Rodrigues et al., 2019), nucleic acids (Pires et al.,
2014b; Pires and Ascher, 2017), small molecules (Pires et al., 2015;
Pires and Ascher, 2016a) and metal ions (Pires et al., 2016b). These
have been successfully used to provide valuable insights into genetic
diseases (Albanaz et al., 2017; Andrews et al., 2018; Ascher et al.,
2019; Casey et al., 2017; Hnizda et al., 2018; Jafri et al., 2015; Jubb
et al., 2017; Nemethova et al., 2016; Pandurangan et al., 2017b;
Ramdzan et al., 2017; Rodrigues et al., 2018a; Silvino et al., 2016;
Soardi et al., 2017; Traynelis et al., 2017; Trezza et al., 2017; Usher
et al., 2015), drug resistance (Ascher et al., 2015; Hawkey et al.,
2018; Holt et al., 2018; Karmakar et al., 2018, 2019; Phelan et al.,
2016; Pires et al., 2016a, b; Portelli et al., 2018; Vedithi et al., 2018)
and rational protein engineering. We have also successfully applied
our graph-based signatures to the prediction of changes in Ab–antigen
binding affinity and showed that this outperformed existing methods,
although there was still significant room for improvement (Pires and
Ascher, 2016b). The release of SKEMPI2.0 containing information of
the effects of new mutations on Ab–antigen binding affinity, allowed
us to not only assess earlier approaches based on new unseen experi-
mental data, but to also build a predictive model across a more com-
prehensive set of Ab–antigen complexes and mutations. In particular,
mCSM-AB only considered structural information, however evolu-
tionary information and energetic terms have been shown to help pre-
dict the effect of a mutation on Ab-binding affinity, as variants which
have destabilizing effects on proteins are less likely to be conserved
from an evolutionary perspective (Gonzalez-Munoz et al., 2012). In

addition, Ab–antigen interfaces are enriched with specific type of
amino acids such as Tyr and Ser (Jubb et al., 2015; Van Regenmortel,
2014) compared with other protein–protein complexes, and different
modes of interatomic interaction may be important to explain
whether the mutation is favourable in its surroundings.

A powerful and scalable model for predicting the effects of mis-
sense mutations on Ab-binding affinity could hold enormous poten-
tial for guiding rational Ab development. Here we introduce
mCSM-AB2, an updated and optimized version of our previous
method, trained on a larger and more comprehensive dataset, which
uses not only graph-based signatures but also interatomic inter-
action, evolutionary and energy-based features to capture additional
structural and sequence-based information to more accurately pre-
dict Ab–antigen affinity changes upon mutation. We show that
mCSM-AB2 significantly outperforms existing methods, and has po-
tential to guide rational Ab engineering.

2 Materials and methods

The general mCSM-AB2 workflow is depicted in Figure 1. It is com-
posed of three main steps including: (i) dataset acquisition, which
refers to collecting experimental evidence from the literature on
effects of mutations in Ab–antigen binding affinity complexes with
solved structures; (ii) feature engineering, which encompasses the
generation and evaluation of features selected to model different
aspects involved in Ab–antigen recognition and effects of mutations

Fig. 1. Overview of the mCSM-AB2 workflow. In data collection, after data acquisition, hypothetical reverse mutations are considered to avoid the natural bias of mutations

reducing affinity. From the complete dataset (1810 mutations), a range of different features are calculated to be used as evidence to train predictive models using machine learn-

ing algorithms. Among the feature classes, graph-based signatures are used to describe the wild-type residue environment and its geometry and physicochemical properties.

Other structural attributes aiming to model other relevant aspects driving Ab-antigen affinity were also considered, including the variation in the distance to the antigen upon

mutations, solvent accessible area, as well as energetic terms and interatomic interactions. Additionally, an evolutionary score (derived from PSSM) was also used to model

mutation tolerance throughout evolution. All features are then used to build predictive models through a series of training and blind-test validation procedures. The best model

was then made available as an easy-to-use web server at http://biosig.unimelb.edu.au/mcsm_ab2
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on these complexes and (iii) machine learning, which aims to train,
test and validate an accurate predictive model via supervised learn-
ing, using the computed features and experimental effects of muta-
tions, as evidence.

2.1 Datasets
To develop our predictive model, we collected binding affinity
data with experimentally determined structures from the AB-BIND
(Sirin et al., 2016), PROXiMATE (Yugandhar et al., 2017) and
SKEMPI2.0 (Jankauskaite et al., 2018) databases to train and test
mCSM-AB2. Compared with the earlier AB-BIND dataset used for
mCSM-AB, we discarded 3 redundant mutations and 27 mutant
non-binders, which led to a dataset of 558 mutations that was
used as the training set. SKEMPI2.0 contained 830 single point
mutations from Ab–antigen complexes, which were filtered using
‘Hold_out_type’ and ‘Hold_out_proteins’ information, to avoid re-
dundancy during training. Of these 830 instances, there were
102 mutations that had more than one experimentally measured
binding affinity for the same mutation, for which we preferentially
kept direct binding assays such as SPR or ITC, leading to a group of
728 mutations. Within the 728 mutations selected from
SKEMPI2.0, we also disregarded 32 mutant non-binders, leaving a
total of 696 mutations in Ab–antigen complexes. Comparing to AB-
BIND, our filtered SKEMPI2.0 dataset contained 377 new muta-
tions in unique complexes not present in the original training set.
CD-HIT (Huang et al., 2010) was used to cluster interfaces with a
similarity threshold of 90%. The new SKEMPI2.0 dataset contained
unique interfaces not present in the original AB-BLIND dataset, and
was hence used as a non-redundant blind test and comparative tool
to evaluate previous methods built using AB-BIND. In total, our
train/blind-test datasets are composed of 905 single mutations and
the mutations from 11 out of 60 Ab–antigen complexes are present
in both training (AB-BIND) and blind test sets (Supplementary
Table S1). This represents not only a significant increase over the
558 mutations used to train mCSM-AB spanning across more than
twice the number of 25 Ab-antigen complexes, but also a non-
redundant experimental blind test set (377 mutations) which allows
us to explicitly compare the performance of our new approach to
mCSM-AB and other methods.

Due to the nature of experimental affinity maturation, these
datasets were unbalanced, with 652 destabilizing (DDGAffinity< 0),
196 stabilizing (DDGAffinity> 0) and 57 neutral (DDGAffinity¼ 0) sin-
gle point mutations (Supplementary Figure S1, left). As has been pre-
viously proposed (Thiltgen and Goldstein, 2012), to avoid any
subsequent bias in our predictive model we also considered the
hypothetical reverse mutations, using mutant structures generated
by FoldX (Eswar et al., 2006). This gave a final dataset of 1810 sin-
gle point mutations (Supplementary Figure S1, right), of which 1056
were used for training, and a non-redundant set of 754 mutations
were used as a blind test set to avoid overtraining and to benchmark
the performance of mCSM-AB2. We also used an additional blind
test set of 87 mutations across five homology models as proposed
previously (Pires and Ascher, 2016b). The datasets used to train and
validate mCSM-AB2 are available on the mCSM-AB2 web server.

2.2 Feature engineering
Three main classes of features were used in mCSM-AB2 as evidence
to train and test predictive models via supervised learning—struc-
tural, evolutionary and energy-based terms. Graph-based signature
are calculated to model the wild-type residue environment.

These represent distance patterns between different atom types
as cumulative distributions of distances, which we previously show
encode both its physicochemical aspects and geometry (Pires et al.,
2014a, 2016a; Pires and Ascher, 2016a, 2017; Rodrigues et al.,
2018a). In order to calculate structure-based features for mutants,
we implemented BuildModel of FoldX for high quality models.
Additionally, the changes in pharmacophores due to the mutation
are also modelled as a feature vector. These pharmacophore changes
calculated the difference in atom counts per class (hydrophobic,
positive charge, negative charge, hydrogen acceptor, hydrogen

donor, aromatic, sulphur and neutral) between wild-type and mu-
tant residues. Additional structural information was also taken into
account, including the change in molecular interactions upon muta-
tion as calculated by Arpeggio (Jubb et al., 2017), the distance
change of the mutation to the Ab–antigen interface, and the change
of relative solvent accessible (RSA) area upon mutation using DSSP
(Touw et al., 2015). Evolutionary-based information was integrated
by calculating the difference of evolutionary scores between wild-
type and mutant using PAM30-based position-specific scoring
matrices (PSSM) (Altschul et al., 1997). An energy-based term was
also generated using FoldX (Stricher et al., 2005) force fields to cal-
culate the difference upon mutation in potential energy between the
wild-type and mutant structures, expressed in kcal/mol.

2.3 Machine learning methods
Using the collected experimental data describing the effects of mis-
sense mutations on Ab–antigen affinity and calculated features, dif-
ferent supervised learning algorithms available on the Scikit-learn
library for Python (Pedregosa et al., 2011) were evaluated, including
Extra Trees (Geurts et al., 2006), Random Forest (Breiman, 2001),
Gradient Boost (Friedman, 2002) and XGBoost (Chen and
Guestrin, 2016) regression. Predictive models were trained using
five times stratified 10-fold cross-validation to avoid sampling bias,
followed by a blind test. A leave-one-complex out cross-validation
procedure was also implemented to assess performance variations
for different Ab–antigen complexes. The final model showed com-
parable performances across the different training schemes including
5-fold, 10-fold, leave-one-complex-out and Jackknife (Wager et al.,
2014) validation, as shown in Supplementary Table S2.

2.4 Evaluation metrics
The performance of individual models was assessed using the
Pearson’s correlation coefficient and root mean square error
(RMSE), considering performances on both cross-validation and
blind tests. The performance of the model was also assessed on 90%
of the data after removing 10% of worst predicted cases to evaluate
effects of outliers on model accuracy.

3 Results

In order to evaluate the performance of mCSM-AB2, we devised a
series of experiments. The first aim was to assess the contribution of
individual feature components to predictive performance as well as
their combination. mCSM-AB2 was further tested on blind tests and
its performance was compared with available methods.

3.1 Quantitative assessment of Ab–antigen affinity

changes upon mutation
Building upon the previous version of mCSM-AB, we have inte-
grated new structure-based features, energy-based terms and evolu-
tionary scores with our graph-based signatures to better model the
changes of topological and physicochemical properties on Ab–anti-
gen affinity induced by missense mutations. Supplementary Table S2
shows the predictive performance of the individual feature classes,
given as Pearson’s correlation coefficient, for different validation
procedures, including 5- and 10-fold cross-validation, as well as
Jackknife validation.

The best performing individual class of features was the graph-
based signatures, contributing to a correlation of q ¼ 0.65 (RMSE
of 2.14 kcal/mol) on 10-fold cross-validation, followed by the differ-
ence in contacts made by wild-type and mutant residues, which
achieved a correlation of q ¼ 0.60 (RMSE of 2.40 kcal/mol), high-
lighting the important role of inter-residue interactions on driving
Ab–antigen affinity and recognition. Pharmacophore modelling was
also an important feature class, achieving a correlation of q ¼ 0.50
(RMSE of 3.12 kcal/mol). Complementary structure-based informa-
tion was also integrated to the method, even with modest perform-
ance, including the change of the RSA upon mutation (q ¼ 0.16
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and RMSE of 10.92 kcal/mol), the change of distance from mutation
site to the antigen interface (q ¼ 0.26 and RMSE of 6.64 kcal/mol).

Other two features incorporated on this new and updated ver-
sion of the method were energy potential terms calculated using
FoldX and sequence-based evolutionary information encoded in
PSSM scoring matrices. These features contributed individually to
a predictive performance of q ¼ 0.26 (RMSE of 6.61 kcal/mol) and
q ¼ 0.42 (RMSE of 3.95 kcal/mol), respectively.

It is interesting to notice that there seems to be little correlation be-
tween the different classes of selected features, as shown in
Supplementary Figure S2, especially to the new evolutionary and energy-
based attributes, indicating they were likely contributing to the predictive
model with non-redundant, novel information. In addition, regardless of
lower performance of evolutionary- and energy-based features, those
have greater importance on the mCSM-AB2 model which indicates
those two features high chance to give synergistic effect with other fea-
tures, not by themselves (Supplementary Figure S3).

By combining the different feature classes to train a regressor al-
gorithm/model, we obtained an improved and optimized model cap-
able of accurately and quantitatively predicting effects of mutations
on Ab–antigen binding affinity across eight different algorithms,
achieving a Pearson’s correlation coefficient of q ¼ 0.73 (RSME of
1.68 kcal/mol) from Extra Tress algorithm (Supplementary Fig. 2A,
Table S3) on 10-fold cross-validation. This model was significantly
different (P�0.05 by Diebold–Mariano test) compared with the
null hypothesis using the average of all values as the prediction
(RMSE ¼ 1.80 kcal/mol), the average of just the experimentally
measured changes in binding affinity (RMSE ¼ 2.07 kcal/mol), and
by randomly scrambling the DDG 10 times to keep the same data
distribution (RMSE ¼ 2.56 kcal/mol). The performance of the
method increases to q ¼ 0.84 on 90% of the data and was not sig-
nificantly different when either 5-fold cross-validation or Jackknife
validation were used, providing additional confidence in the model.

Compared with earlier mCSM-AB, we implemented additional
features from both wild-type and mutant structures which demand
more computational cost, but those features improved the perform-
ance on training and two blind tests (Supplementary Table S4). The
reliability of the model structures obtained through FoldX was
assessed by comparing with seven experimental mutant structures
(Supplementary Table S5). The modelled structures used in mCSM-
AB2 showed a low average Ca RMSD of 0.13 Å.

3.2 Comparative performance and blind tests
In order to put mCSM-AB2 prediction results into context, we have
carried out a performance comparison with other available methods
using a non-redundant blind test composed of 754 mutations with
experimentally measured changes in binding affinity. mCSM-AB2
significantly outperformed alternative approaches, achieving a
Pearson’s correlation coefficient of q ¼ 0.64 (P�0.0001, as
depicted in Table 1 and Fig. 2B), showing that not only it was able
to accurately predict Ab–antigen binding affinity changes but also
presented a significant improvement in comparison with its previous
version (q ¼ 0.42). This performance was comparable to the cross-
validation performance, increasing our confidence in the method’s
generalization capabilities.

Comparison of mCSM-AB2 performance across the training set
also showed it performed significantly better than other methods
that have been used to guide rational Ab engineering (Table 1).
Interestingly, there were only weak correlations between mCSM-
AB2 and other Ab engineering methods (Supplementary Fig. S4),
including the original method, highlighting its use of complementary
but distinguishing information, and suggesting that a consensus pre-
dictor might be informative.

The experimental datasets were enriched in mutations located at
the antigen interface (>80% within 6 Å as shown in Fig. 2C), which is
not surprising since many experiments have focused on variations in
the CDR loops with alanine scanning (>60% of mutations in the data-
set are to alanine). The distance from a mutation site to the Ab–antigen
interface influenced on the performance of mCSM-AB2. Comparing
performance on mutations less than 6 Å, 6–10 Å and greater than 10 Å
away from the antigen interface, mCSM-AB2 achieved a Pearson’s

correlation of 0.74 (r ¼ 0.004), 0.52 (r ¼ 0.029) and 0.54 (r ¼
0.073), respectively. This deterioration of the performance on muta-
tions located further away from the interface may be due to the limited
number of distal mutations in the training set. As a result of the
distance-based analysis, the mCSM-AB2 web server gives users a confi-
dence level of prediction, high or moderate, depending on the distance
between the mutation and Ab–antigen binding interface.

While mutations to alanine were inherently enriched in the data-
set, the performance of mCSM-AB2 was consistent across mutations
to any residue (Supplementary Table S6). This can be further sup-
ported by the analysis of the experimental blind test results showing
mCSM-AB2 outperforms all other methods across all types of muta-
tions (Supplementary Fig. S5).

An earlier study (Sinha et al., 2002) suggested several experimen-
tal DDGs from the HyHEL-10 Fab and lysozyme complex (PDB:
3HFM), which were measured by indirect methods such as spectro-
scopic inhibition assay (IASP) and spectroscopic method (SP), pre-
sented a large discrepancy with DDG from direct method such as
surface plasmon resonance (SPR). In order to measure the contribu-
tion of each of Ab–antigen complexes on the performance of
mCSM-AB2, we conducted the leave-one-complex-out cross-valid-
ation on the 60 Ab–antigen complexes. Notably, the mutations from
3HFM presented a large portion of outliers in both 10-fold and
leave-one-complex-out cross validations showing 31 and 17 out of
181 worst predicted data points, respectively (Supplementary Table
S7). The overall performance on leave-one-complex-out (Pearson’s
correlation of q ¼ 0.70), however, was comparable with the 10-
fold cross-validation results (Pearson’’s correlation of q ¼ 0.73),
further demonstrating the robustness of the method.

3.3 Performance on homology models
As experimental crystal structures might not always be available, we
also wanted to compare the performance of mCSM-AB2 on predict-
ing effects of mutations on Ab–antigen binding affinity using hom-
ology models. We used a previously proposed homology model
dataset (Sirin et al., 2016) of 87 experimentally measured changes in
binding affinity upon mutation across five homology models of the
corresponding Ab–antigen complex. The mCSM-AB2 predictions
correlated well with the experimental values (q ¼ 0.77, RMSE ¼
1.66), and was significantly more accurate than all other predictive
methods analyzed (Table 1). This highlights the versatility and ro-
bustness of the mCSM-AB2 predictions, and its applicability even in
the absence of an experimental structure of an Ab–antigen complex.

3.4 mCSM-AB2 web server
We have developed a web server to provide the functionalities of
mCSM-AB2 in an intuitive way, increasing reproducibility and

Table 1. Performance comparison between mCSM-AB2 and avail-

able methods

Method Pearson’s correlation

Training Blind test

AB-BIND Experimental set Homology model

bASA 0.22a,*** 0.29*** 0.41***

dDFIRE 0.19a,*** 0.31*** 0.53***

DFIRE 0.31a,*** 0.38*** 0.52**

FoldX 0.34a,*** 0.26*** 0.45***

Discovery Studio 0.45a,*** 0.31*** 0.53**

mCSM-PPI 0.35a,*** 0.32*** 0.26***

mCSM-AB 0.56a,*** 0.42*** 0.54*

mCSM-AB2 0.76 0.64 0.77

Note: Pearson’s correlation coefficient of each of the methods were com-

pared with mCSM-AB2 by Fisher’s r-to-z transformation (*P� 0.05,

**P� 0.001 and ***P� 0.0001).
aFrom Sirin et al. (2016).
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Fig. 2. Performance of mCSM-AB2 in predicting Ab–antigen affinity changes upon mutation. mCSM-AB2 achieved a Pearson’s correlation of q ¼ 0.73 (RMSE ¼ 1.68) on 10-

fold cross-validation (A), q ¼ 0.64 (RMSE ¼ 1.85) on a non-redundant experimental dataset for a model trained on the AB-BIND dataset (B). Performance of mCSM-AB2

after excluding the 10% largest errors (red triangles) are shown as black circles. (C) Through 10 times of 10-fold cross-validation runs, mCSM-AB2 achieved a Pearson’s cor-

relation of 0.74 (r ¼ 0.004), 0.52 (r ¼ 0.029) and 0.54 (r ¼ 0.073) on mutations whose distances to their Ab–antigen binding interfaces are less than 6 Å (1442 mutations), be-

tween 6 and 10 Å (269 mutations) and greater than 10 Å (99 mutations), respectively. Fisher’s r-to-z transformation was used to compare Pearson’s correlations from different

size of mutation (* P�0.001 and ** P�0.0001). (Color version of this figure is available at Bioinformatics online.)

Fig. 3. mCSM-AB2 web server result pages. Single mutation prediction (left) provides predicted DDGAffinity and interaction changes upon mutation via a 3D molecular viewer

for both wild-type and mutant. Alanine scanning (right top) describes mutational effects on interface residues with molecular viewer and bar charts. In saturation mutagenesis

analysis (right bottom), users can check Ab–antigen affinity changes for each of the 19 possible mutations for each interface residues

mCSM-AB2: guiding rational antibody design 1457
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facilitating large-scale analyses. The front-end was designed with
Bootstrap framework version 4.1 and the back-end was based on
Python 2.7 via the Flask framework version 1.0.2 on a Linux server
running Apache. It allows users to upload Ab–antigen complexes (in
PDB format) and either analyze specific mutations provided by the
user, or systematically evaluate mutations across the entire Ab–antigen
interface via either alanine scanning or saturation mutagenesis, facilitat-
ing, for instance, the identification of mutations that are more likely to
increase affinity, aiding the rational design of Abs. The results pages
allow easy visualization of the alanine-scanning and saturation-
mutagenesis predictions mapped to the 3D structure as well as
heat-mapped tables (Fig. 3). Users are able to check information such
as distance to binding interface and Chothia annotation calculated by
ANARCI (Dunbar and Deane, 2016) and download all results includ-
ing the predictions as a CSV file, and the provided PDB files with the
predicted changes in binding affinity mapped to the B-factor column.

4 Conclusions

The ability to predict favourable Ab–antigen mutations is a crucial,
but non-trivial, challenge to help guide routine affinity maturation.
While a number of successful computational-guided Ab develop-
ment examples have been published in recent years, computational
tools haven’t had yet transformative effects for Ab engineering due
to limited accuracy of available computational methods.

mCSM-AB2 is a computational approach that leverages both se-
quence and structural information to allow users to accurately assess
the effects of single-point mutations on Ab–antigen binding affinity.
Across all training and blind test evaluations, mCSM-AB2 signifi-
cantly outperformed all currently used Ab mutational analysis
approaches, using both experimental structures and homology mod-
els, highlighting its potential power to help guide Ab development.
This also highlights the power of our graph-based signatures in
terms of predicting mutational effects on Ab–antigen affinities by ef-
ficiently representing structural environment of wild-type and mu-
tant residues, but also show the importance of considering
evolutionary aspects, energetic terms and inter-residue interactions
to better understand molecular recognition.

We believe that mCSM-AB2 will be a powerful tool to not only
streamline Ab development and engineering but also providing bet-
ter insight into the effects of mutations in Ab–antigen interfaces,
including escape mutations. A user-friendly web server implement-
ing mCSM-AB2 functionalities was implemented and is freely
available at http://biosig.unimelb.edu.au/mcsm_ab2, facilitating
large-scale analysis of entire Ab–antigen interfaces.
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